BIBLIOGRAPHY

DIAGRAM IXBLEACH AND AMMONIA PRICESBleach and ammonia prices

DIAGRAM IXBLEACH AND AMMONIA PRICES

In Canada, the market conditions are still (1918) favourable to the chloramine process: bleach is 25 per cent higher than the U.S.A. product and ammonia can be obtained for one-half the New York prices.

Advantages of the Chloramine Process.Although the market conditions may, in some instances, be unfavourable to the chloramine process, the method possesses certain advantages that more than offset a slight possible increase in the cost of materials. The taste and odour of chloramine is even more pungent than that of chlorine but since the introduction of the process in Ottawa no complaints have beenreceived. Owing to the reduced dosage, slight proportional fluctuations in the dosage do not produce the same variations in the amount of free chlorine which is the usual cause of complaints. A public announcement that the amount of hypochlorite has been reduced also has a psychological effect upon the consumers and tends to reduce complaints due to auto-suggestion.

The most important advantage of the process is the elimination of the aftergrowth problem. At Denver, where the aftergrowth trouble is possibly more acute than at any other city on the continent, it was effectively banished by the use of chloramine. At Ottawa, the sanitary significance ofB. coliaftergrowths is no longer of practical interest because such aftergrowths have ceased to occur. Whatever may be their opinion as to the sanitary significance of aftergrowths, all water sanitarians will agree that the better policy is to prevent their occurrence.

Operation of Chloramine Process.For the successful operation of the chloramine process, the essential factors are low concentrations of the hypochlorite and ammonia solutions. The author has found that hypochlorite containing 0.3-0.5 per cent of available chlorine and ammonia containing 0.3-0.5 per cent of anhydrous ammonia can be mixed in a 4 : 1 or 8 : 1 ratio without appreciable loss in titre. Solutions of these concentrations mixed in 4 : 1 ratio lost only 2-3 per cent of available chlorine in fifteen minutes and less than 10 per cent in five hours. The effect of mixing solutions containing 4.35 per cent of available chlorine and 2.2 per cent of ammonia is shown inTable XXX.

The stability of chloramine is a function of the concentration and the temperature and in practice it will be found advisable to determine in the laboratory the maximum concentrations that can be used at the maximum temperature attained by the water to be treated (cf. Muspratt and Smith[6]).

According to Raschig[1]two competing reactions occur when ammonia is in excess.

When the excess of ammonia is large, as on the addition of ammonia fort, the second reaction predominates and the yield of nitrogen gas is almost quantitatively proportional to the quantity of available chlorine present. As ammonium chloride has no germicidal action, and hydrazine a carbolic coefficient of only 0.24 (Rideal), the formation of these compounds should be avoided.

The dosage of chloramine can be checked by titration of the available chlorine (seep. 82) immediately after treatment or by the estimation of the increment in the total ammonia (free and albuminoid). Routine determinations of the latter made in Ottawa show that practically the whole (90-95 per cent) of the added ammonia can be recovered by distillation with alkaline permanganate and that 85-90 per cent is in the “free” condition.

In operating the chloramine process it is important that the pipes used for conveying the chloramine solution should be of ample dimensions and provided with facilities for blowing out the lime that deposits from the solution.

Ca(OCl)2+ 2NH3= 2NH2Cl + Ca(OH)2.

The marked activity of chloramine as a chlorinating agent could be predicated from its heat of formation, which is 8,230 calories. The other possible chloramines should be even more active as the heat of formation of these compounds are:

Dichloramine is unknown but nitrogen chloride has been prepared and is a highly explosive yellow oil that decomposes slowly when kept under water in the ice box. NCl3can be easily prepared by passing chlorine gas into a solution of ammonium chloride and this process would suggest that a method might be found of utilising chlorine and ammonia as gases for the production of nitrogen trichloride as a germicide for water chlorination. NH4Cl + 3Cl2= NCl3+ 4HCl.

The “available” chlorine content of the chloramines is double the actual chlorine content as each atom of chlorine will liberate two atoms of iodine from hydriodic acid.

For the sterilisation of small individual quantities of water such as are required by cavalry and other mobile troops bleach and acid sulphate tablets have been usually employed.Such tablets have given fairly satisfactory results but certain difficulties inherent to these chemicals have made it desirable to seek other methods.

The subject was investigated by Dakin and Dunham,[7]who first tried chloramine-T (sodium toluene-p-sulphochloramide). It was found that heavily contaminated waters, and particularly those containing much carbonates, required a comparatively high concentration of the disinfectant: 40 parts per million of chloramine-T were necessary in some cases and such an amount was distinctly unpalatable. By adding tartaric acid or citric acid the effective concentration could be reduced to 4 p.p.m. but the mixture could not be made into a tablet without decomposition and a two-tablet system was deemed undesirable.

Toluene sulphodichloramines were next tried. Excellent bacteriological results were obtained but the manufacture of tablets again presented difficulties. When the necessary quantity of dichloramine was mixed with what were assumed to be inert salts—sodium chloride for example—the normal slow rate of decomposition was accelerated. The dichloramine, in tablet form, was also found to be too insoluble to effect prompt sterilisation.

The most suitable substance found by Dakin and Dunham was “halazone” orp-sulphodichloraminobenzoic acid (Cl2N·O2S·C6H4·COOH). This compound is easily prepared from cheap readily available materials and was found to be effective and reasonably stable.

The starting point in the preparation of halazone isp-toluenesulphonic chloride, a cheap waste product in the manufacture of saccharine. By the action of ammonia,p-toluene sulphonamide is produced and is subsequently oxidised by bichromate and sulphuric acid top-sulphonamidobenzoic acid. This acid, on chlorination at low temperatures, yieldsp-sulphondichloraminobenzoic acid (halazone). The reactions may be expressed as follows:

Halazone formation

Halazone is a white crystalline solid, sparingly soluble in water and chloroform, and insoluble in petroleum. It readily dissolves in glacial acetic acid from which it crystallizes in prisms (M.P. 213° C.).

The purity of the compound can be ascertained by dissolving in glacial acetic acid, adding potassium iodide, and titrating with thiosulphate; 0.1 gram should require 14.8 to 14.9 c.cms. of N/10 sodium thiosulphate. Each chlorine atom in halazone is equivalent to 1 molecule of hypochlorous acid and the “available” chlorine content is consequently 52.5 per cent or double the actual chlorine content.

>SO2·NCl2+ 4HI  =  >SO2·NH2+ 2HCl + 2I2.

From the bacteriological results given by Dakin and Dunham it would appear that 3 parts per million of halazone (1.5 p.p.m. available chlorine) are sufficient to sterilise heavily polluted waters in thirty minutes and that this concentration can be relied upon to remove pathogenic organisms.

The formula recommended for the preparation of tablets is halazone 4 per cent, sodium carbonate, 4 per cent (or dried borax 8 per cent), and sodium chloride (pure) 92 per cent.

Halazone and halazone tablets, when tested in the author’s laboratory on the coloured Ottawa River water seeded withB. coli, have given rather inferior results. With 1 tablet per quart, over six hours were required to reduce aB. colicontent of 100 per 10 c.cms. to less than 1 per 10 c.cms. Clear well waters gave excellent results and large numbers ofB. coliwere reduced to less than 1 per 10 c.cms. in less than thirty minutes. McCrady[B]has also obtained excellent resultswith various strains ofB. coliseeded into the colourless St. Lawrence water.

[B]Private communication.

[1]Raschig. Chem. Zeit., 1907,31, 926.[2]Rideal. S. J. Roy. San. Inst., 1910,31, 33-45.[3]Race. J. Amer. Waterworks Assoc., 1918,5, 63.[4]Race. Eng. and Contr., 1917,47, 251.[5]Contract Record. Aug. 15, 1917, 696.[6]Muspratt and Smith. J. Soc. Chem. Ind., 1898,17, 529.[7]Dakin and Dunham. Brit. Med. Jour., 1917, No. 2943, 682.

[1]Raschig. Chem. Zeit., 1907,31, 926.

[2]Rideal. S. J. Roy. San. Inst., 1910,31, 33-45.

[3]Race. J. Amer. Waterworks Assoc., 1918,5, 63.

[4]Race. Eng. and Contr., 1917,47, 251.

[5]Contract Record. Aug. 15, 1917, 696.

[6]Muspratt and Smith. J. Soc. Chem. Ind., 1898,17, 529.

[7]Dakin and Dunham. Brit. Med. Jour., 1917, No. 2943, 682.

The object of adding chlorine or chlorine compounds to water is for the purpose of destroying any pathogenic organisms that may be present. In a few instances some collateral advantages are also obtained but, in general, no other object is aimed at or secured.

Chlorination does not change the physical appearance of water; it does not reduce or increase the turbidity nor does it decrease the colour in an appreciable degree.

The chemical composition is also practically unaltered. When bleach is used there is a proportionate increase in the hardness but the amount is usually trifling and is without significance. During 1916 when the Ottawa supply was entirely treated with bleach at the rate of 2.7 parts per million (0.92 p.p.m. of available chlorine) the average increase in the total hardness as determined by the soap method was 2.5 parts per million.

When chlorine is added to prefiltered water, as an adjunct to filtration, an increase in the number of gallons filtered per run has been noted at some plants. This increase is not so great with rapid as with slow sand filters but in some instances it has led to appreciable economies.

Walden and Powell[1]of Baltimore, found that the addition of a quantity of bleach equal to approximately 0.50 p.p.m. of available chlorine enabled the alum to be reduced from 0.87 to 0.58 grain per gallon. The percentage of water used in washing the filters was also reduced, from 4.1 per centto 2.9 per cent, whilst the filter runs were increased on the average by one hour and ten minutes. The net saving in coagulant alone amounted to 30 cents per million gallons.

Clark and De Gage[2]found that the use of smaller amounts of coagulant during the period of combined disinfection and coagulation resulted in an increase of nearly 25 per cent in the quantity of water passed through the filter between washings, and also in a material reduction of the cost of chemicals, which averaged $2.62 per million gallons for combined disinfection and coagulation as against $4.86 for coagulation alone. The water used in these experiments was obtained from the Merrimac River at Lawrence.

The effect of hypochlorite on the reduction of algæ growths on slow sand filters was first noticed by Houston during the treatment of the Lincoln supply in 1905. Two open service reservoirs were fed with treated water and were themselves dosed from time to time. “Previous to 1905 they developed seasonally most abundant growths, but during the hypochlorite treatment it was noticed that they remained bright, clear, and remarkably free from growths” (Houston[3]).

Ellms,[4]of Cincinnati, has also noted the effect of hypochlorite on algæ. When the bleach was added to the coagulated water the destruction of the plankton was not as satisfactory as had been anticipated and it was found that large doses destroyed the coating of the sand particles and rendered the filters less efficient. The use of bleach in the filtered water basin was more successful and cleared it of troublesome growths.

In 1916, during the treatment of the London Supply with bleach (dosage 0.5 p.p.m. of available chlorine), Houston made further observations on this point. The Thames water, taken at Staines, had previously been stored for considerable periods in reservoirs, but this necessitated lifting the water by pumps which consumed large quantities of coal that were urgently needed for national purposes. As a war measure,the storage was eliminated and the water treated with hypochlorite at Staines and allowed to flow by gravitation to the various works where the slow sand filters are situated. The treatment resulted in a marked reduction in the growths of algæ, the reduction in the area of filters cleaned in 1916 (June to September) as compared with 1915 being as follows:

A portion of this reduction can probably be attributed to the elimination of storage.

Chlorination, by decreasing the load on filter beds, has enabled the rate of filtration to be increased in some cases. This increased capacity, which would otherwise have necessitated additional filter units, has been obtained without any further capital outlay. At Pittsburg (Johnson[5]) the rate of filtration, after cleaning, was increased 250,000 gallons each hour until the normal rate was reached; restored beds were maintained at a 250,000 gallon rate for one week. After the introduction of chlorination it was found possible to increase the rates more rapidly without adversely affecting the purity of the mixed filter affluents.

Hygienic Results.Evidence as to the actual reduction of the number of such pathogenic germs asB. typhosusin water supplies by chlorination is most readily found in the death rates from typhoid fever in cities that have no other means of water purification. In some cases this evidence is necessarily of a circumstantial nature; in others it is definite and conclusive.

Some of the earlier results of the effect of chlorination on typhoid morbidity and mortality rates were compiled byJennings[6]and others have been published by Longley.[7]These data have been brought up to date inTable XXXIand other statistics added.

The figures given in this table show the effect of chlorination only; no other form of purification was used during the periods given, except at Toronto where a portion of the supply has been subjected to filtration.

It will be seen that since chlorination was adopted the typhoid death rates have been reduced by approximately 50 per cent and that the averages for the period after treatment are almost invariably less than 20 per 100,000, a figure that a few years ago was regarded as satisfactory. The average death rate for the last available year is 11 per 100,000, a result that is even more satisfactory and exceeds the anticipations of the most optimistic of sanitarians.

A portion of the reduction in the typhoid rates is no doubt due to improvements in general sanitary conditions but the reduction is much greater than can be accounted for in thatmanner alone and in many cases there was a sharp decline immediately following the commencement of chlorination.

In a few instances there is evidence that chlorination has reduced the typhoid rates of cities previously supplied with filtered water.Diagram X, drawn from data supplied by Dr. West, of the Torresdale Filtration Plant, shows the effect of disinfecting the filter effluents at Philadelphia.

DIAGRAM XTYPHOID IN PHILADELPHIATyphoid in Philadelphia

DIAGRAM XTYPHOID IN PHILADELPHIA

During the years 1909-10-11, when practically the whole of the city supply was filtered, the average typhoid death rate was 18, but when the water was also chlorinated, in 1914-15-16, the rate was only 7, a reduction of 61 per cent.

The figures inTable XXXIIshow that the Torresdale filters, during 1915-16 were unable to adequately purify the water and that chlorination was necessary.

InDiagram XIthe typhoid death rates of Columbus, Ohio, and New Orleans are shown to exemplify conditions that have not been improved by chlorination. The endemic condition of typhoid in Columbus was brought to an abrupt conclusion by the installation and operation of the softening and filter plant in September, 1908, and no further reduction followed the introduction of chlorination in December, 1909.

DIAGRAM XITYPHOID IN COLUMBUS AND NEW ORLEANSTyphoid in Columbus and New Orleans

DIAGRAM XITYPHOID IN COLUMBUS AND NEW ORLEANS

In New Orleans the typhoid rate decreased on the inception of the new water works system in 1909 and again after the installation of the Carrollton filters in 1912. The product of the filtration plants has always been above suspicion but aftergrowths occasionally developed and the bacterial count then exceeded the United States Treasury standard. To overcome this difficulty, hypochlorite was used in 1915, but, as was anticipated, it had no effect on the typhoid rate. The high rate in New Orleans is largely due to outside cases received for hospital treatment and to other circumstances beyond the control of the water and sewerage department.

In all the examples previously cited, the evidence as to the effect of chlorination on typhoid mortality rates is circumstantial but, taken as a whole, it is fairly conclusive. In the examples to be considered next the evidence is more direct.

One of the most conclusive experiments as to the beneficial effect of chlorination is that reported by Young[8]of Chicago. The water supply of Chicago was obtained from Lake Michigan by means of intake pipes and pumped to various parts of the city. The distribution system was divided into four districts and, although there was a certain amount of mixing along the borders, the water supplied to each district was substantially separate. The rapid and progressive decline in the typhoid rate of Chicago (from 19in 1900 to 10.8 in 1911) subsequent to the diversion of the city sewage from the lake, led to the assumption that water-borne typhoid had ceased to be of any moment. Early in 1912, however, permission was secured to chlorinate the supply of one district (No. 1) and the treatment was continued until December when the solutions commenced to freeze.Diagram XIIshows the effect of the treatment on the autumnal increase in District No. 1 as compared with the other three districts. The autumnal increase was calculated from the excess of typhoid incidence for July to November inclusive, over that for February to June inclusive.

DIAGRAM XIIAUTUMNAL INCREASE IN TYPHOID, CHICAGO (Young)Autumnal increase in typhoid, Chicago

DIAGRAM XIIAUTUMNAL INCREASE IN TYPHOID, CHICAGO (Young)

These results demonstrate in a most striking manner the beneficial effect of chlorination. The general conditions, with the exception of the raw water supply, were approximately the same in all four districts.Diagram XIIIshows that the raw water supply of District No. 1 was slightly worse than any of the others, 21.8 per cent of the samples from District No. 1 containingB. coliin 1 c.cm. as compared with 21.0 per cent in the most polluted supply of the other districts.

DIAGRAM XIIIB. COLI IN CHICAGO RAW WATER (Young)B. coli in Chicago raw water

DIAGRAM XIIIB. COLI IN CHICAGO RAW WATER (Young)

The results obtained at Ottawa are also conclusive. Following two epidemics of typhoid fever in 1911 and 1912, caused by breaks in the intake pipe, hypochlorite treatment was commenced and has been in continuous operation until February, 1917, when chloramine treatment was substituted. The dosage has been so regulated as to assure a high degree of purity at all times in the water delivered to the mains and as evidence of this it might be mentioned that the averageB. coliindex (calculated by Phelps’ method) for the years 1916 and 1917 was only 0.27 per 100 c.cms. The typhoid rates for the five years preceding the epidemic years and for a similar subsequent period are given inDiagram XIV.

DIAGRAM XIVTYPHOID IN OTTAWATyphoid in Ottawa

DIAGRAM XIVTYPHOID IN OTTAWA

The diagram shows that there has been a constant reduction in the city typhoid rate since the last severe epidemic with the exception of the year 1915. The high rate of that year was caused by a localised epidemic started by polluted well water and spread by flies from an unsewered area. This outbreak was the cause of about seven deaths registered during that year (population 100,000).

The objection might be raised that if the reduction of the typhoid rate were due to the water treatment, the decline should have been abrupt and not a gradual one. It is probable that there has been practically no water-borne typhoid inthe city since chlorination was commenced but this fact is masked by cases from other sources. During 1911 and 1912 over 3,500 cases of typhoid were reported, of which an appreciable number would become carriers for various periods of time. As these carriers decreased the number of cases infected by them would also decrease and so account for a gradually declining death rate.

It might be further objected that the reduced typhoid rate is due to a general improvement in the sanitary conditions. If the death rate from causes other than typhoid can be regarded as a measure of the general sanitary conditions it is obvious from the data inTable XXXIIIthat the improvement in the typhoid rate is immeasurably greater than can be ascribed to that cause.

One further objection might be made: that the raw water was not infected during 1913-17 or infected to a smaller extent than during the previous period. Attempts to isolateB. typhosusfrom the raw water have invariably been futile but their presence in 1914 might be inferred from the fact that during the latter part of the summer of that year an epidemic of typhoid fever occurred at Aylmer, a village that discharges its sewage into the Ottawa River about six miles above the Ottawa intake. Hull, situated on the oppositebank of the river and having a population of 20,000, takes its water supply from the same channel that supplies Ottawa but at a point a few hundred feet further down stream. During November and December, 1914, some 200 cases of typhoid fever (incidence 1,000 per 100,000) occurred in Hull as compared with 28 in Ottawa. As the Ottawa intake is situated between the Hull intake and the outlet of the Aylmer sewer it is incredible that the Ottawa raw water was not also infected.

In 1916 a liquid chlorine plant was installed in Hull, but in 1917, owing to an accident, it was out of commission for a short period and at least 100 cases of fever developed during the following month. During the same period only two cases were reported in Ottawa and of these one was obviously contracted outside the city.

In view of the preceding facts it must be granted that the improvement in the typhoid rate of Ottawa can be definitely attributed to an improvement in the water supply caused by chlorination.

The efficacy of chlorination to prevent and check epidemics of water-borne typhoid has never been doubted. Innumerable instances could be cited in which the prompt treatment of large public supplies has promptly checked outbreaks that threatened to assume serious proportions and there is no doubt that the extremely low typhoid morbidity rate on the Western Front of the European battlefield is partially due to the extensive and rigorous chlorination measures that have been instigated. Prophylactic vaccination and the prompt isolation of typhoid carriers have largely contributed to the wonderful results obtained but due credit must also be given to the systematic purification and treatment of water supplies. Similar results have been obtained at training camps in Canada and in other countries by effective treatment with either liquid chlorine or hypochlorite.

Since the inception of water chlorination in America in 1908, the merit of the method has been very generally recognizedthroughout the Continent but was regarded with scepticism in Europe, except as a temporary expedient, until the results obtained by the military forces compelled more general recognition. Before the war, chlorination of water supplies in England was only practised in a few isolated and relatively unimportant instances; in 1917, practically the whole supply of London was chlorinated and at Worcester a similar treatment has been recommended to enable the slow sand filters to be operated at higher rates without reducing the quality of the water supplied to the consumers.

Use and Abuse of Chlorine.Inasmuch as chlorination has no beneficial effect on water except the reduction of the bacterial content it should be used for this purpose only and under such conditions as permit the operations to be under full control at all times. The supplies that can be most efficiently and safely treated are those that are relatively constant in chemical composition and bacterial pollution. Changes in volume can be dealt with by automatic apparatus but sudden changes in organic and bacterial content require a change of dosage that cannot be made by any mechanical appliance. Long experience and accurate meteorological records may in some cases enable those in charge of chlorination plants to anticipate changes in the conditions of the water supply, but it is always preferable to provide a positive method of preventing sudden changes by using chlorination merely as an adjunct to other processes of purification. Unpurified waters that are objectionable on account of their bacterial content only are very rare, as the cause that produces the bacterial pollution usually produces other conditions that are equally objectionable though not so dangerous to health. Sudden storms in summer, or sudden thaws in winter, usually cause large increments in turbidity accompanied by soil washings that often carry appreciable quantities of fæcal matter into surface water supplies. Lake supplies often suffer in the same manner and sewage, whichduring normal conditions is carried safely away from water intakes, obtains access to the supply. If the dosage is maintained at a level sufficiently high to meet these abnormal conditions, complaints as to taste and odour would ensue, and in general, such a practice is impossible. Some supplies have been chlorinated successfully for years but the principle of using chlorination as the first and last line of defence cannot be recommended. Success can only be obtained by eternal vigilance and the responsibility for results is more than water works officials should be called upon to assume.

Chlorination is an invaluable adjunct to other forms of water purification and it is not improbable that, in the future, filter plants will be designed to remove æsthetic objections at the lowest possible cost and that chlorination will be relied upon for bacterial reduction. Chlorination is the simplest, most economical, and efficient process by which the removal of bacteria can be accomplished and there is no valid reason why it should not be used for that purpose.

The popularity of this process has suffered through the efforts of over zealous enthusiasts who have been unable either to recognize its limitations or to appreciate the fact that a domestic water supply should be something more than a palatable liquid that does not contain pathogenic organisms. Every system of water purification has its limited sphere of utility and chlorination is no exception to the rule.


Back to IndexNext