STRUCTURAL GEOLOGY.

STRUCTURAL GEOLOGY.

In geology, just as in biology, there are two ways of studying structure,—the small way and the large way. In the case of an organism, we may select a single part or organ, and, disregarding its external form and relations to other parts, observe its composition and minute structure, the various forms and arrangements of the cells, etc. This is histology, and it is the complement of that larger method of studying structure which is ordinarily understood by anatomy.

The divisions of structural geology corresponding to histology and anatomy arelithologyandpetrology. Lithology is an in-door science; we use the microscope largely, and work with hand specimens or thin sections of the rocks, observing the composition and those small structural features which go under the general name of texture.

In petrology, on the other hand, we consider the larger kinds of rock-structure, such as stratification, jointing, folds, faults, cleavage, etc.; and it is essentially an out-door science, since to study it to the best advantage we must have, not hand specimens, but ledges, cliffs, railway-cuttings, gorges, and mountains.

LITHOLOGY.

Arockis any mineral, or mixture of minerals, occurring in masses of considerable size. This distinction of size is the only one that can be made between rocks and minerals, and that is very indefinite. A rock, whether composed of one mineral or several, is always an aggregate; and therefore no single crystal or mineral-grain can properly be called a rock.

Before proceeding to study particularly the various kinds of rocks, a little more preliminary work should be done. As already intimated, the more important characteristics of rocks may be grouped under two general heads,—compositionandtexture.

Rocks are properly defined as large masses or aggregates of mineral matter, consisting in some cases of one and in other cases of several mineral species. Hence it is clear that the composition of rocks is of two kinds: chemical and mineralogical; for the various chemical elements are first combined to form minerals, and then the minerals are combined to form rocks.

Of course those minerals and elements which can be described as principal or important rock-constituents must be the common minerals and elements. Now it is a very important and convenient fact that although chemists recognize about sixty-five elementary substances, and these are combined to form nearly one thousand mineral species, yet both thecommonelements and thecommonminerals are few in number.

So that, although it is very desirable and even necessary for the student of lithology to know something of chemistry and mineralogy, it by no means follows that he or she must be master of those sciences. A knowledge of the chemical and physical characteristics of a few common minerals is all that is absolutely essential, though it may be added that an excess of wisdom in these directions is no disadvantage.

The elementary substances of which rocks are chiefly composed, which make up the main mass of the earth so far as we are acquainted with it, number only fourteen:—

Non-Metallic or Acidic Elements.—Oxygen, silicon, carbon, sulphur, chlorine, phosphorus, and fluorine.

Metallic or Basic Elements.—Aluminum, magnesium, calcium, iron, sodium, potassium, and hydrogen.

The elements are named in each group in about the order of their relative abundance; and to give some idea of the enormous differences in this respect it may be stated that two of the elements—oxygen and silicon—form more than half of the earth’s crust.

Silicon, calcium, and fluorine, although exceedingly abundant, are also very difficult to obtain in the free or uncombined state, and specimens large enough to exhibit to a class would be very expensive. With these exceptions, however, examples of these common rock-forming elements are easily obtained.

My purpose in calling attention to this point is simply to suggest that the proper way to begin the study of minerals and rocks with children is to first familiarizethem with the elements of which they are composed. The most important thing to be known about any mineral is its chemical composition; and when a child is told that a mineral—corundum, for example—is composed of oxygen and aluminum, he should have a distinct conception of the properties of each of those elements, for otherwise corundum is for him a mere compound of names.

It is very important, too, if the pupil has not already studied chemistry, that he should be led to some comprehension of the nature of chemical union and of the difference between a chemical compound and a mechanical mixture. For this purpose a few simple experiments (the details of which would be out of place here) with the more common and familiar elements will be sufficient. Mrs. Richard’s “First Lessons in Minerals” should be introduced here.

The fourteen elements named above are combined to form about fifty minerals with which the student of geology should be acquainted; but not more than one-half of these are of the first importance. It is desired to lay especial emphasis upon the importance of a perfect familiarity with these few common minerals. There is nothing else in the whole range of geology so easily acquired which is at the same time so valuable; for it is entirely impossible to comprehend the definitions of rocks, or to recognize rocks certainly and scientifically, unless we are acquainted with their constituent minerals.

With one or two exceptions, these common rock-forming minerals may be easily distinguished by theirphysical characters alone, so that their certain recognition is a matter of the simplest observation, and entirely within the capacity of young children. Furthermore, being common, specimens of these minerals are very easily obtained, so that there is no reason why teachers should not here adopt the best method and place a specimen of each mineral in the hands of each pupil. Typical examples, large enough to show the characteristics well, ought not to cost, on the average, over two cents apiece.

AMINERALis an inorganic body having theoretically a definite chemical composition, and usually a regular geometric form.

The Principal Characteristics of Minerals.—These may be grouped under the following general heads:—

(1)Composition, (2)Crystalline form, (3)Hardness, (4)Specific gravity, (5)Lustre, (6)Color and Streak.

1.Composition.—This, according to the definition of a mineral, ought to bedefinite, and expressible by a chemical formula. When it is not so, we usually consider that the mineral is partially decomposed, or that we are dealing with a mixture of minerals. It is well to impress upon the mind of the pupil the important fact that the more fundamental properties of the elements, such as specific gravity and lustre, are not lost when they combine, but may be traced in the compounds. In other words, the properties of minerals are, in a very large degree, the average of the properties of the elements of which they are composed; minerals in which heavy metallic elements predominate being heavy and metallic, andvice versa.

To fully appreciate this point it is only necessary to compare a mineral like galenite—a common ore of lead, and containing nearly 87 per cent. of that heavy metal; or hematite (specimen 13), containing 70 per cent. of another heavy metal, iron—with quartz (specimen 15), which is composed in nearly equal parts of oxygen and silicon, two typical non-metallic elements. Many minerals contain water,i.e., are hydrated. Now water, whether we consider the liquid or solid state, is one of the lightest and softest of mineral constituents; and it is a very important fact that hydrated minerals are invariably lighter and usually softer than anhydrous species of otherwise similar composition. Other striking illustrations of this principle will be pointed out in the descriptions of the minerals which follow.

2.Crystalline form.—A crystal is bounded by plane surfaces symmetrically arranged with reference to certain imaginary lines passing through its centre and called axes. Crystals of the same species are always constant in the angles between like planes, while similar angles usually vary in different species; so that each species has its own peculiar form.

“Besides external symmetry of form, crystallization produces also regularity of internal structure, and often of fracture. This regularity of fracture, or tendency to break or cleave along certain planes, is called cleavage. The surface afforded by cleavage is often smooth and brilliant (see specimens 17, 18, and 21), and is always parallel with some external plane of the crystal. It should be understood that the cleavage lamellæ are not in any sense present before they are made to appear by fracture.”—(Dana.)

Crystals are arranged in six systems, based upon the number and relations of the axes, as follows:—

Isometric System.—Three equal axes crossing at right angles. Example, cube.

Tetragonal System.—Two axes equal, third unequal, all crossing at right angles. Example, square prism.

Orthorhombic System.—Three unequal axes, but intersections all at right angles. Example, rhombic prism.

Monoclinic System.—Three unequal axes, one intersection oblique. Example, oblique rhombic prism.

Triclinic System.—Three unequal axes, all crossing obliquely. Example, oblique rhomboidal prism.

Hexagonal System.—Three equal axes lying in one plane and intersecting at angles of 60°, and a fourth axis crossing each of these at right angles and longer or shorter. Example, hexagonal prism.

By the truncation and bevelment of the angles and edges of these fundamental forms a vast variety of secondary forms are produced. The limits of the guide will not permit us to follow this topic farther; but it may be added that for the proper elucidation of even the simpler crystalline forms the teacher should be provided with a set of wooden crystal models and Dana’s “Text-Book of Mineralogy.”

The crystallization of a mineral may be manifested in two ways: first, by the regularity of its internal structure or molecular arrangement, as shown by cleavage and the polarization of transmitted light; and, second, by the regularity of external form which follows,underfavorable conditions, as a necessary consequence of symmetry in the arrangement of the molecules.

When a mineral is entirely devoid of crystalline structure, both externally and internally, it is said to beamorphous.

Perfect and distinct crystals are the rare exception, most mineral specimens being simply aggregates of imperfect crystals. In such cases, and when the mineral is amorphous, thestructureof themassmay be:—

Columnarorfibrous.

Lamellar,foliaceous, ormicaceous.

Granular.—When the grains or crystalline particles are invisible to the naked eye the mineral is calledimpalpable,compact, ormassive.

And theexternal formof the mass may be:—

Botryoidal, having grape-like surfaces.

Stalactitic, forming stalactites or pendant columns.

AmygdaloidalorConcretionary, forming separate globular masses in the enclosing rock.

Dendritic, branching or arborescent.

3.Hardness.—By the hardness of a mineral we mean the resistance which it offers to abrasion. But hardness is a purely relative term, calcite, for example, being hard compared with talc, but very soft compared with quartz. Hence mineralogists have found it necessary to select certain minerals to be used as a standard of comparison for all others, and known as thescale of hardness. These are arranged at nearly equal intervals all the way from the softest mineral to the hardest, as follows:—

(1) Talc.(2) Gypsum.(3) Calcite.(4) Fluorite.(5) Apatite.(6) Orthoclase.(7) Quartz.(8) Topaz or Beryl.(9) Corundum.(10) Diamond.

(1) Talc.(2) Gypsum.(3) Calcite.(4) Fluorite.(5) Apatite.(6) Orthoclase.(7) Quartz.(8) Topaz or Beryl.(9) Corundum.(10) Diamond.

(1) Talc.(2) Gypsum.(3) Calcite.(4) Fluorite.(5) Apatite.(6) Orthoclase.(7) Quartz.(8) Topaz or Beryl.(9) Corundum.(10) Diamond.

(1) Talc.

(2) Gypsum.

(3) Calcite.

(4) Fluorite.

(5) Apatite.

(6) Orthoclase.

(7) Quartz.

(8) Topaz or Beryl.

(9) Corundum.

(10) Diamond.

If a mineral scratches calcite and is scratched by fluorite, we say its hardness is between 3 and 4, perhaps 3.5; if it neither scratches nor is scratched by orthoclase, its hardness is 6; and so on. There are very few minerals harder than quartz, and hence the first seven members of the scale are sufficient for all ordinary purposes; and these are all included in the series of specimens accompanying this Guide.

Although it is desirable to be acquainted with the scale of hardness, and to understand how to use it, still the student will learn, after a little practice, that almost as good results may be obtained much more conveniently by the use of his thumb-nail and a good knife-blade or file. Talc and gypsum are easily scratched with the nail; calcite and fluorite yield easily to the knife or file, apatite with more difficulty; while orthoclase is near the limit of the hardness of ordinary steel, and quartz is entirely beyond it.

4.Specific Gravity.—The specific gravity of a mineral, by which we mean its weight as compared with the weight of an equal volume of water, is determined by weighing it first in air and then in water, and dividing the weight in air by the difference of the two weights. Minerals exhibit a wide range in specific gravity; from petroleum, which floats on water, to gold,which is nearly twenty times heavier than water. Although this is one of the most important properties of minerals, yet, being more difficult to measure than hardness, it is less valuable as an aid in distinguishing species. One can with practice, however, estimate the density of a mineral pretty closely by lifting it in the hand.

5.Lustre.—Of all the properties of minerals depending on their relations to light the most important is lustre, by which we mean the quality of the light reflected by a mineral as determined by the character or minute structure of its surface. Two kinds of lustre, themetallicandvitreous, are of especial importance; in fact all other kinds are merely varieties of these.

The metallic lustre is the lustre of all true metals, as copper and tin, and characterizes nearly all minerals in which metallic elements predominate. The vitreous lustre is best exemplified in glass, but belongs to most minerals composed chiefly of non-metallic elements. Metallic minerals are always opaque, but vitreous minerals are often transparent.

Other kinds of lustre are theadamantine(the lustre of diamond),resinous,pearly, andsilky. When a mineral has no lustre, like chalk, it is said to be dull.

It should be made clear to children that lustre and color are entirely distinct and independent. Thus, iron, copper, gold, silver, and lead are all metallic; while white or colorless quartz, black tourmaline, green beryl, red garnet, etc., are all vitreous. Generally speaking, any color may occur with any lustre.

6.Color and Streak.—The colors of minerals are of two kinds,—essentialandnon-essential. By theessential color in any case we mean the color of the mineral itself in its purest state. The non-essential colors, on the other hand, are chiefly the colors of the impurities contained in the minerals.

Metallic minerals, which are always opaque, usually have essential colors; but vitreous minerals, which are always more or less transparent, often have non-essential colors. The explanation is this: In opaque minerals we can only see the impurities immediately on the surface, and these are, as a rule, not enough to affect its color; but in diaphanous minerals we lookintothe specimen and see impurities below the surface, and thus bring into view, in many cases, sufficient impurity so that its color drowns that of the mineral.

To prove this we have only to take any mineral (serpentine is a good example in our series) having a non-essential color, and make it opaque by pulverizing it or abrading its surface, when the non-essential color, the color of the impurity, immediately disappears; just as water, yellow with suspended clay, becomes white when whipped into foam, and thus made opaque.

What we understand by thestreakof a mineral is its essential color, the color of its powder; and it is so called because the powder is most readily observed by scratching the surface of the mineral, and thereby pulverizing a minute portion of it. The streak and hardness are thus determined at the same time. The streak of soft minerals is easily determined by rubbing them on any white surface of suitable hardness, as paper, porcelain, or Arkansas stone.

Essential and Accessory Minerals.—Lithologists, regarding minerals as constituents of rocks, divide theminto two great classes: theessentialand theaccessory. The essential constituents of a rock are those minerals which are essential to the definition of the rock. For example, we cannot properly define granite without naming quartz and orthoclase; hence these are essential constituents of granite; and if either of these minerals were removed from granite it would not be granite any longer, but some other rock. But other minerals, like tourmaline and garnet, may be indifferently present or absent; it is granite still; hence they are merely accidental or accessory constituents. They determine the differentvarietiesof granite, while the essential minerals make thespecies.

This classification, of course, is not absolute, for in many cases the same mineral forms an essential constituent of one rock and an accessory constituent of another. Thus, quartz is essential in granite, but accessory in diorite.

Principal Minerals constituting Rocks.—Having studied in a general way the more important characteristics of minerals, brief descriptions of the chief rock-forming species are next in order. We will notice first and principally those minerals occurring chiefly asessentialconstituents of rocks.

1.Graphite.—Essentially pure carbon, though often mixed with a little iron oxide. Crystallizes in hexagonal system, but usually foliated, granular, or massive. Hardness, 1-2, being easily scratched with the nail. Sp. gr., 2.1-2.3. Lustre, metallic; an exception to the rule that acidic elements have non-metallic or vitreous lustres. Streak, black and shining (see pencil-mark on white paper). Color, iron-black. Slippery or greasyfeel. Everyblack-leadpencil is a specimen of graphite. Specimen 9.

The different kinds of mineral coal are, geologically, as we have seen, closely related to graphite, but they are such familiar substances that they need not be described here.

2.Halite(common salt).—Chloride of sodium: chlorine, 60.7; sodium, 39.3; = 100. Isometric system, usually forming cubes. Hardness, 2.5, a little harder than the nail. Sp. gr., 2.1-2.6. Lustre, vitreous. Streak and color both white, and hence color is essential. Often transparent. Soluble; taste, purely saline. In specific gravity and lustre it is a good example of a mineral in which an acidic element predominates. Specimen 11.

3.Limonite.—Hydrous sesquioxide of iron: oxygen, 25; iron, 60; water, 15; = 100. Usually amorphous; occurring in stalactitic and botryoidal forms, having a fibrous structure; and also concretionary, massive, and earthy (yellow ochre). Hardness, 5-5.5. Sp. gr., 3.6-4. Lustre, vitreous or silky, inclining to metallic, and sometimes dull. Color, various shades of black, brown, and yellow. Streak, ochre-yellow; hence color partly non-essential. Specimen 12.

4.Hematite.—Sesquioxide of iron: oxygen, 30; iron, 70; = 100. Hexagonal system, in distinct crystals, but usually lamellar, granular, or compact,—columnar, botryoidal, and stalactitic forms being common. Hardness, 5.5-6.5; good crystals are harder than steel. Sp. gr., 4.5-5.3. Lustre, metallic, sometimes dull. Color, iron-black, but red when earthy or pulverized (red ochre). Streak, red, and color, therefore, mainly non-essential;sometimes attracted by the magnet. Specimen 13.

Hematite has the same composition as limonite, minus the water; and by comparing the hardness and specific gravity of these two minerals we see that they are a good illustration of the principle that hydrous minerals are softer and lighter than anhydrous minerals of analogous composition. Limonite and hematite are two great natural coloring agents, and almost all yellow, brown, and red colors in rocks and soils are due to their presence.

5.Magnetite.—Protoxide and sesquioxide of iron: oxygen, 27.6; iron, 72.4; = 100. Isometric system, usually in octahedrons or dodecahedrons. Most abundant variety is coarsely to finely granular, sometimes dendritic. Hardness, 5.5-6.5, same as hematite. Sp. gr., 4.9-5.2. Lustre, metallic. Color and streak, iron-black, and hence color essential. Strongly magnetic; some specimens have distinct polarity, and are called loadstones. Specimen 14.

The three iron-oxides just described—limonite, hematite, and magnetite—are all important ores of iron, and form a well-marked natural series. Thus limonite is never, hematite is usually, and magnetite is always, crystalline. Again, limonite with 60 per cent. of iron is never magnetic, hematite with 70 per cent. is sometimes magnetic, while magnetite with 72.4 per cent. is always magnetic. As the iron increases so does the magnetism. We have here an excellent illustration of the principle that the properties of the elements can be traced in those minerals in which they predominate. Iron is the only strongly magneticelement: magnetite contains more iron than any other mineral, and it is the only strongly magnetic mineral.

These three iron-ores are easily distinguished from each other by the color of their powders or streak,—limonite yellow, hematite red, and magnetite black,—and from all other common minerals by their high specific gravity.

6.Quartz.—Oxide of silicon or silica: oxygen, 53.33; silicon, 46.67; = 100. Hexagonal system. The most common form is a hexagonal prism terminated by a hexagonal pyramid. Also coarsely and finely granular to perfectly compact, like flint; the compact or cryptocrystalline varieties often assuming botryoidal, stalactitic, and concretionary forms. It has no cleavage, but usually breaks with an irregular, conchoidal fracture like glass. Hardness, 7, being No. 7 of the scale; scratches glass easily. Sp. gr., 2.5-2.8. Lustre, vitreous. Pure quartz is colorless or white, but by admixture of impurities it may be of almost any color. Streak always white or light colored. Quartz is usually, as in specimen 15, transparent and glassy, but may be translucent or opaque. It is almost absolutely infusible and insoluble.

The varieties of quartz are very numerous, but they may be arranged in two great groups:—

1.Phenocrystallineorvitreousvarieties, including rock-crystal, amethyst, rose quartz, yellow quartz, smoky quartz, milky quartz, ferruginous quartz, etc.

2.Cryptocrystallineorcompactvarieties, including chalcedony, carnelian, agate, onyx, jasper, flint, chert, etc. Only three varieties, however, are of any great geological importance; these are: common glassy quartz (spec. 15), flint (spec. 16), and chert.

Quartz is one of the most important constituents of the earth’s crust, and it is also the hardest and most durable of all common minerals. We have already observed (p. 12) that it is entirely unaltered by exposure to the weather;i.e., it cannot be decomposed; and, being very hard, the same mechanical wear which, assisted by more or less chemical decomposition, reduces softer minerals to an impalpable powder or clay, must leave the quartz chiefly in the form of sand and gravel. This agrees with our observation that sand (spec. 30), especially, is usually merely pulverized quartz.

Opalis a mineral closely allied to quartz, and may be mentioned in this connection. It is of similar composition, but contains from 5 to 20 per cent. of water, and is decidedly softer and lighter. Hardness, 5.5-6.5; sp. gr., 1.9-2.3.

7.Gypsum.—Hydrous sulphate of calcium: sulphur trioxide (SO₃), 46.5; lime (CaO), 32.6; water (H₂O), 20.9; = 100. Monoclinic system. Often in distinct rhombic crystals; also foliated, fibrous, and finely granular. Hardness, 1.5-2; the hardest varieties being No. 2 of the scale of hardness. Sp. gr., 2.3. Lustre, pearly, vitreous, or dull. Color and streak usually white or gray. The principal varieties of gypsum are (a)selenite, which includes all distinctly crystallized or transparent gypsum; (b)fibrous gypsumorsatin-spar; (c)alabaster, fine-grained, light-colored, and translucent. Gypsum is easily distinguished from all common minerals resembling it by its softness and the fact that it is not affected by acids. Specimen 17.

8.Calcite.—Carbonate of calcium: carbon dioxide(CO₂), 44; lime (CaO), 56; = 100. Hexagonal system, usually in rhombohedrons, scalenohedrons, or hexagonal prisms. Cleavage rhombohedral and highly perfect (specimen 18). Also fibrous and compact to coarsely granular, in stalactitic, concretionary, and other forms. Hardness, 2.5-3.5, usually 3 (see scale of hardness). Sp. gr., 2.5-2.75. Lustre, vitreous. Color and streak usually white. Transparent crystallized calcite is known asIceland-spar, and is remarkable for its strong double refraction. When finely fibrous it makes asatin-sparsimilar to gypsum. Geologically speaking, calcite is a mineral of the first importance, being the sole essential constituent of all limestones. It is readily distinguished from allied species by its perfect rhombohedral cleavage; by its softness, being easily scratched with a knife; and above all by its lively effervescence with acids, for it is theonly commonmineral effervescingfreelywithcold diluteacid. To apply this test it is only necessary to touch the specimen with a drop of dilute chlorohydric acid. The effervescence, of course, is due to the escape of the carbon dioxide in a gaseous form. Specimen 18.

9.Dolomite.—Carbonate of calcium and magnesium: carbonate of calcium (CaCO₃), 54.35; carbonate of magnesium (MgCO₃), 45.65; = 100. Hexagonal system, being nearly isomorphous with calcite. Rhombohedral cleavage perfect. Hardness, 3.5-4; sp. gr., 2.8-2.9, being harder and heavier than calcite. Lustre, color, and streak same as for calcite, from which it is most easily distinguished by its non-effervescence or only feeble effervescence with cold dilute acid, though effervescing freely with strong or hot acid. Spec. 19.

10.Siderite.—Carbonate of iron: carbon dioxide (CO₂), 37.9; protoxide of iron (FeO), 62.1; = 100. Crystallization and cleavage essentially the same as for calcite and dolomite. Hardness, 3.5-4.5, and sp. gr., 3.7-3.9. Lustre, vitreous. Color, white, gray, and brown. Streak, white. With acid, siderite behaves like dolomite. It is distinguished from both calcite and dolomite by its high specific gravity, which is easily explained by the fact that it is largely composed of the heavy element, iron.

With one exception, the fifteen minerals which we have yet to study belong to the class of silicates, which includes more than one-fourth of the known species of minerals, and, omitting quartz and calcite, all of the really important rock-constituents. The silicate minerals may be very conveniently divided into two great groups, thebasicandacidic. This is not a sharp division; on the contrary, there is a perfectly gradual passage from one group to the other; and yet this is, for geological purposes at least, a very natural classification. The dividing line falls in the neighborhood of 60 per cent. of silica;i.e., all species containing this proportion of silica orlessare classed as basic, since in them the basic elements predominate; while those containingmorethan 60 per cent. of silica are classed as acidic, because their characteristics are determined chiefly by the acid element or silica. The principal bases occurring in the silicates, named in the order of their relative importance, are aluminum, magnesium, calcium, iron, sodium, and potassium; and of these, magnesium, calcium, iron, and usually sodium, are especially characteristic of basic species.

Iron is the heaviest base; but all the bases, except sodium and potassium, are heavier than the acid—silica; consequently basic minerals must be, as a rule, heavier than acidic minerals. And since basic minerals contain more iron than acidic, they must be darker colored. In general, we say,dark, heavysilicates arebasic, andvice versa. All this is of especial importance because in the rocks nature keeps these two classes separate in a great degree.

11.Amphibole.—Silicate of aluminum, magnesium, calcium, iron, and sodium. The bases occur in very various proportions, forming many varieties; but the only variety of especial geological interest ishornblende, the average percentage composition of which is as follows: silica (SiO₂), 50; alumina (Al₂O₃), 10; magnesia (MgO), 18; lime (CaO), 12; iron oxide (FeO and Fe₂O₃), 8; and soda (Na₂O), 2; = 100. Monoclinic system: usually in rhombic or six-sided prisms which may be short and thick, but are more often acicular or bladed. Hardness, 5-6; sp. gr., 2.9-3.4. Lustre, vitreous; color, black and greenish black; and streak similar to color, but much paler. Compare with quartz, and observe the strong contrast in color possible with minerals having the same lustre. Specimen 20.

12.Pyroxene.—Like amphibole, this species embraces many varieties, and these exhibit a wide range in composition; but of theseaugitealone is an important rock-constituent. Hence in lithology we practically substitute for amphibole and pyroxene, hornblende, and augite respectively.

Augite is very similar in composition to hornblende,but contains usually more lime and less alumina and alkali. Physically, too, these minerals are almost identical, crystallizing in the same system and in very similar forms, and agreeing in hardness, color, lustre, and streak. Augite is heavier than hornblende, sp. gr., 3.2-3.5. A certain prismatic angle, which in augite is 87°5´, is 124°30´ in hornblende. Slender, bladed crystals are more common with hornblende than augite. When examined in thin sections with the polarizer, augite does not afford the phenomenon of dichroism, which is strongly marked in hornblende. However, as these minerals commonly occur in the rocks, in small and imperfect crystals, these distinctions can only be observed in thin sections under the microscope; so that, as regards the naked eye, they are practically indistinguishable.

It might appear at first that the distinction of minerals so nearly identical is not an important matter; but nature has decreed otherwise. Augite and hornblende are typical examples of basic minerals; but augite is, both in its composition and associations, the more basic of the two. In proof of this we need only to know that it very rarely occurs in the same rock with quartz, while hornblende is found very commonly in that association. Quartz in a rock means an excess of acid or silica, and almost necessarily implies the absence of highly basic minerals. In other words, hornblende is often, and augite very rarely, found in connection with acidic minerals; and it is this difference of association chiefly that makes their distinction essential to the proper recognition of rocks; while at the same time it affords an easy, though of course not absolutely certain,means of determining whether the black constituent of any particular rock is hornblende or augite.

Mica Family.—Mica is not the name of a single mineral, but of a whole family of minerals, including some half-dozen species. Only two, however,—muscovite and biotite,—are sufficiently abundant to engage our attention. These are complex, basic silicates of aluminum, magnesium, iron, potassium, and sodium. The crystallization of biotite is hexagonal, and of muscovite monoclinic; but both occur commonly in flat six-sided forms. Undoubtedly the most important and striking characteristic of the whole mica family is the remarkably perfect cleavage parallel with the basal planes of the crystals, and the wonderfulthinness, and above all theelasticity, of the cleavage lamellæ. The cleavage contrasts the micas with all other common minerals, and makes their certain identification one of the easiest things in lithology. The micas are soft minerals, the hardness ranging from 2 to 3, and being usually easily scratched with the nail. Sp. gr. varies from 2.7-3.1. Lustre, pearly; and streak, white or uncolored.

The distinguishing features of muscovite and biotite are as follows:—

13.Muscovite.—Contains 47 per cent. of silica, 3 per cent. of sesquioxide of iron, and 10 per cent. of alkalies, chiefly potash; and the characteristic colors are white, gray, and, more rarely, brown and yellow. Non-dichroic. Usually found in association with acidic minerals. The mica used in the arts is muscovite. Specimen 21.

14.Biotite.—Contains only 36 per cent. of silica,20 per cent. of oxide of iron, and 17 per cent. of magnesia; colors, deep black to green. Strongly dichroic. Commonly occurs with other basic minerals. Compare color with per cent. of iron.

These differences are tabulated below:—

Feldspar Family.—Like mica,feldsparis the name of a family of minerals; and these are, geologically, the most important of all minerals. They are, above all others, the minerals of which rocks are made, and their abundance is well expressed in the name,—feldspar being simply the German for field-spar, implying that it is the common spar or mineral of the fields.

Chemically, the feldspars are silicates of aluminum and potassium, sodium or calcium. They crystallize in the monoclinic and triclinic systems; and all possess easy cleavage in two directions at right angles to each other, or nearly so. The general physical characters, including the cleavage, are well exhibited in the common species, orthoclase (specimen 22).

In hardness the feldspars range from 5 to 7, being usually near 6, and almost always distinctly softer than quartz. Sp. gr. varies from 2.5-2.75; lustre, from vitreous to pearly; color, from white and gray to red, brown, green, etc., but usually light. Streak, always white; rarely transparent. By exposure to the weather, feldspars gradually lose their alkalies and lime, becomehydrated, and are changed to kaolin or common clay. A similar change takes place with the micas, augite, and hornblende; but these species, being usually rich in iron, make clays which are much darker colored than those derived from feldspars. The fact that the feldspars contain little or no iron undoubtedly explains their low specific gravity and light colors, as compared with the other minerals just named. The only common minerals for which the feldspars are liable to be mistaken are quartz and the carbonates. From the latter they are easily distinguished by their superior hardness and non-effervescence with acids; and from the former, by possessing distinct cleavage, by being rarely transparent, by being somewhat softer, and by changing to clay on exposure to the weather.

The feldspars of greatest geological interest are five in number, and may be classified chemically as follows:—

This appears like a complex arrangement, but it can be simplified. Orthoclase crystallizes in the monoclinic system, and all the other feldspars in the triclinic system. With the exception of albite, which is a comparativelyrare species, the triclinic feldspars all contain less silica than orthoclase;i.e., are more basic. This is shown by the subjoined table giving the average composition of each of the feldspars:—

As we should naturally expect, the triclinic feldspars occur usually with other basic minerals, while the monoclinic species, orthoclase, is acidic in its associations; furthermore, the triclinic feldspars are often intimately associated with each other, but are rarely important constituents of rocks containing much orthoclase. In other words, the distinction of orthoclase from the basic or triclinic feldspars is important and comparatively easy, while the distinction of the different basic feldspars from each other is both unimportant and difficult. Hence, in lithology, we find it best to put all these basic feldspars together, as if they were one species, under the nameplagioclase, which refers to the oblique cleavage of all these feldspars, and contrasts withorthoclase, which refers to the right-angled cleavage of that species.

This statement of the relations of the feldspars is, of course, beyond the comprehension of many children, and yet it should be understood by the teacher who would lead the children to any but the most superficial views.

15.Orthoclase.—This is the common feldspar, andthe most abundant of all minerals, being the principal constituent of granite, gneiss, and many other important rocks. The most characteristic colors are white, gray, pinkish, and flesh-red. Specimen 22.

16.Plagioclase.—Like orthoclase, these species may be of almost any color; yet these two great divisions of the feldspars are usually contrasted in this respect. Thus, bluish and grayish colors are most common with plagioclase, and white or reddish colors with orthoclase. Specimen 23 is labradorite, and, in every respect, a typical example of plagioclase. On certain faces and cleavage-surfaces of the plagioclase crystals we may often observe a series of straight parallel lines or bands which are often very fine,—fifty to a hundred in a single crystal. These striæ are due to the mode of twinning, and are of especial importance, since, while they are very characteristic of plagioclase, they never occur in orthoclase. As stated, these twinning striæ in plagioclase are often visible to the naked eye; and when they are not, they may usually be revealed by examining a thin section under the microscope with polarized light. Plagioclase decays much more rapidly when exposed to the weather than orthoclase. This point becomes perfectly clear when we compare weathered ledges of diabase (or any trap-rock, see specimen 2) and granite; for plagioclase is the principal constituent of the former rock, and orthoclase of the latter.

Hydrous Silicates.—Many silicates contain water, and some of these are of great geological importance. What has been stated on a preceding page concerning the softness and lightness of hydrated minerals is especiallyapplicable here; for all the geologically important hydrous silicates are distinctly softer and lighter than anhydrous minerals of otherwise similar composition. Furthermore, they usually have an unctuous or slippery feel; and, with one exception (kaolin), are of a green or greenish color.

17.Kaolinite (Kaolin).—Hydrous silicate of aluminum: silica (SiO₂), 46; alumina (Al₂O₃), 40; and water (H₂O), 14; = 100. Orthorhombic system, in rhombic or hexagonal scales or plates, but usually earthy or clay-like. Hardness, 1-2.5; sp. gr., 2.4-2.65. The pure mineral is white; but it is usually colored by impurities, the principal of which are iron oxides and carbonaceous matter. Kaolin is the most abundant of all the hydrous silicates, and it is the basis and often the sole constituent of common clay,—a very common mineral, but rarely pure. We have already (p. 11) noticed the mode of origin of kaolin or clay. It results from the decomposition of various aluminous silicate minerals, especially the feldspars. Under the combined influence of carbon dioxide and moisture, feldspars give up their potassium, sodium, and calcium, and take on water, and the result is kaolin. This mineral is believed to be always a decomposition product. Perhaps the best, or at least the most convenient, test for kaolin is the argillaceous odor, the odor of moistened clay. Specimen 24.

18.Talc.—Hydrous silicate of magnesium: silica (SiO₂), 63 (acidic); magnesia (MgO), 32; water (H₂O), 5; = 100. Orthorhombic system, but rarely in distinct crystals. Cleavage in one direction very perfect; the cleavage lamellæ are flexible, but not elastic,as in mica. Hardness, 1; see scale. Sp. gr., 2.55-2.8. Lustre, pearly. Color, apple-green to white; and streak, white. The feel is very smooth and greasy; and, in connection with the color and foliation, affords the best means of distinguishing talc from allied minerals. Talc sometimes results from the alteration of augite, hornblende, and other minerals, but it is not always nor usually an alteration product.

19.Serpentine.—Hydrous silicate of magnesium: silica (SiO₂), 44 (basic); magnesia (MgO), 44; water (H₂O), 12; = 100. Essentially amorphous. Hardness, 2.5-4; sp. gr., 2.5-2.65. Lustre, greasy, waxy, or earthy. Color, various shades of green and usually darker than talc, but streak always white. Feel, smooth, sometimes greasy. Distinguished from talc by its hardness, compactness, and darker green. Sometimes results from the alteration of olivine and other magnesian minerals, but usually we are to regard it as an original mineral. Specimen 25.

20.Chlorite.—This is, properly, the name of a group of highly basic minerals of very variable composition, but they are all essentially hydrous silicates of aluminum, magnesium, and iron; and the average composition of the most abundant species, prochlorite, is as follows: silica (SiO₂), 30; alumina (Al₂O₃), 18; magnesia (MgO), 15; protoxide of iron (FeO), 26; and water (H₂O), 11; = 100. The chlorites crystallize in several different systems, but in all there is a highly perfect cleavage in one direction, giving, as in talc, a foliated structure with flexible but inelastic laminæ. The cleavage scales, however, are sometimes minute, and the structure massive or granular. Hardness ofprochlorite, 1-2; between talc and serpentine. Sp. gr., 2.78-2.96. All the chlorites have a pearly to vitreous lustre. Color usually some shade of green; in prochlorite a dark or blackish green, darker than serpentine, as that is darker than talc. Streak, a lighter, whitish green. Less unctuous than talc, but more so than serpentine. The chlorites are produced very commonly, but not generally, by the alteration of basic anhydrous silicates, like augite and hornblende. Specimen 26.

21.Hydro-mica.—This, too, is properly the name of a group of minerals; but for geological purposes they may be regarded as one species. Taking a general view of the composition, these are simply the anhydrous or ordinary micas, which we have already studied, with from 5 to 10 per cent. of water added. In crystallization and structure they are essentially mica-like. Although not distinctly softer than the common micas, they are lighter, always more unctuous and slippery, and usually of a greenish color. The micaceous structure withelasticlaminæ serves to distinguish the hydro-micas from other hydrous silicates.

22.Glauconite.—Hydrous silicate of aluminum, iron, and potassium: silica (SiO₂), 50; alumina (Al₂O₃), protoxide of iron (FeO), and potash (K₂O), together, 41; and water (H₂O), 9; = 100. Amorphous, forming rounded and generally loose grains, which often have a microscopic organic nucleus. It is dull and earthy, like chalk, and always soft, green, and light, but not particularly unctuous. Glauconite is the principal, often the sole, constituent of the rock greensand, which occurs abundantly in the newer geological formations, and is now forming in the deep water of the Gulf ofMexico and along our Atlantic sea-board. Specimen 27.

This completes our list of minerals occurring chiefly asessentialconstituents of rocks; and following are three of the more common and important minerals occurring chiefly asaccessory, rarely as essential, rock-constituents.

23.Chrysolite (Olivine).—Silicate of magnesium and iron: silica (SiO₂), 41; magnesia (MgO), 51; protoxide of iron (Fe₂O₃), 8; = 100. Orthorhombic system; but usually in irregular glassy grains. Hardness, 6-7. Sp. gr., 3.3-3.5. Lustre, vitreous; color, usually some shade of green; and streak, white. Chrysolite sometimes closely resembles quartz, but its green color usually suffices to distinguish it. It is a common constituent of basalt and allied rocks. By absorption of water it is changed into serpentine and talc. See examples in specimen.

24.Garnet.—The composition of this mineral is extremely variable; but the most important variety is a basic silicate of aluminum and iron: silica (SiO₂), 37; alumina (Al₂O₃), 20; and protoxide of iron (FeO), 43; = 100. Isometric system, usually in distinct crystals, twelve-sided (dodecahedrons) and twenty-four-sided (trapezohedrons) forms being most common. Hardness, 6.5-7.5; average as hard as quartz. Sp. gr., 3.15-4.3; compare with the high percentage of iron. Lustre, vitreous; colors, various, usually some shade of red or brown; and streak, white. Some varieties contain iron enough to make them magnetic. Garnet is easily distinguished by its form, color, and hardness from all other minerals. It is a common but not anabundant mineral, occurring most frequently in gneiss, mica schist, and other stratified crystalline rocks. See examples in specimen.

25.Pyrite.—Sulphide of iron: sulphur, 53.3; iron, 46.7; = 100. Isometric system, occurring usually in distinct crystals, the cube and the twelve-sided form known as the pyritohedron being the most common. Hardness, 6-6.5, striking fire with steel. Sp. gr., 4.8-5.2; heavy because rich in iron. Lustre, metallic and splendent. Color, pale, brass-yellow, and streak, greenish or brownish. Pyrite is sometimes mistaken for gold, but it is not malleable; while its color, hardness, and specific gravity, combined, easily distinguish it from all common minerals. As an accessory rock-constituent, pyrite occurs usually in isolated cubes or pyritohedrons. Specimen 10.

Textureis a general name for those smaller structural features of rocks which can be studied inhand specimens, and which depend upon theformsandsizesof theconstituent particlesof the rocks, and thewaysin which these areunited.

By “constituent particles” we mean, not the atoms or molecules of matter composing the rocks, but thepebblesin conglomerate,grains of sandin sandstone,crystals of quartz,feldspar, andmicain granite, etc. The four most important textures are:—

(1)Fragmental texture.—The rock is composed of mere irregular, angular, or rounded, but visible, fragments. Examples: sand, sandstone, gravel, conglomerate, etc. Specimens 30, 31, 28, 29.

(2)Crystalline texture.—The constituent particles are chiefly, at least, distinctly crystalline, as shown either by external form, or cleavage, or both. Examples: granite, diabase, gneiss, etc. Specimens 45, 1, 41.

(3)Compact texture.—The constituent particles are indistinguishable by the naked eye, but become visible under the microscope, appearing as separate crystalline grains or as irregular fragments. In other words, if, in the case of either the granular or crystalline textures, we conceive the particles to become microscopically small, then we have the compact texture. Examples: clay, slate, many limestones, basalt, etc. Specimens 34, 35, 39.

(4)Vitreous texture.—The texture of glass, in which the constituent particles are absolutely invisible even with the highest powers of the microscope, and may be nothing more than themoleculesof the substance, which thus, so far as our powers of observation are concerned, presents a perfectly continuous surface. Examples: obsidian, glassy quartz, and some kinds of coal. Specimens 47, 15.

These four textures, which, it will be observed, are determined by the forms and sizes of the constituent particles, may be called theprimarytextures, because every rockmustpossess one of them. We cannot conceive of a rock which is neither fragmental, crystalline, compact, nor vitreous. But in addition to one of the primary textures, a rock may or may not have one or more of what may be calledsecondarytextures. These are determined by the way in which the particles are united, the mode or pattern of the arrangement, etc.Following are definitions of the principal secondary textures:—

(1)Laminated texture.—This exists where the particles are arranged in thin, parallel layers, which may be marked simply by planes of division, or the alternate layers may be composed of particles differing in composition, form, size, or color, etc. Among the laminated textures we thus distinguish: (a) thebandedtexture, where the layers are contrasted in color, texture, or composition, but cohere, so that there is no cleavage or easy splitting parallel with the stratification; and (b) theschistoseorshalytexture, where such fissility or stratification-cleavage exists. If a fragmental, compact, or vitreous rock is fissile, we use the termshaly; but a fissile, crystalline rock is described asschistose. The banded texture may occur with the fragmental,—banded sandstones, etc.; with the crystalline,—many gneisses, etc. (specimen 41); with the compact,—many slates, limestones, felsites, etc. (specimens 34, 42); with the vitreous,—banded obsidian, furnace slags, and some coal. The schistose texture may occur with the crystalline,—mica schist, etc. (specimen 43); and the shaly texture with the compact and fragmental, but rarely with the vitreous.

(2)Porphyritic texture.—We have this texture whenseparateanddistinct crystalsofanymineral, but most commonly of feldspar, are enclosed in arelativelyfine-grained base or matrix, which may be either crystalline, compact, or vitreous, but rarely fragmental. Specimens 5, 6, 7 are examples of the porphyritic compact texture.

(3)Concretionary texture.—When one or more constituents of a rock have the form, in whole or in part, not of distinct angular crystals, but of rounded concretions, the texture is described as concretionary, the concretions taking the place in this texture of the isolated crystals in the porphyritic texture. This texture occurs in connection with all the primary textures, but the most familiar example is oölitic limestone.

(4)Vesicular texture.—A rock has this texture when it contains numerous small cavities or vesicles. These are most commonly produced by the expansion of steam and other vapors when the rock is in a plastic state; and hence the vesicular texture is found chiefly in volcanic rocks. Except rarely, it is associated only with the compact texture,—ordinary stony lavas (specimen 49); and with the vitreous texture,—pumice (specimen 48).

(5)Amygdaloidal texture.—In the course of time the vesicles of common lava are often filled with various minerals deposited by infiltrating waters, giving rise to the amygdaloidal texture, from the Latinamygdalum, an almond, in allusion to a common form of the vesicles, or amygdules, as they are called, after being filled. The amygdaloidal texture is thus necessarily preceded by the vesicular, and is limited to the same classes of rocks. Specimen 50.

Besides the foregoing, there are many minor secondary textures. The rocks known as tufas have what may be called thetufaceoustexture. Then we have kinds of texture depending on thestrengthof the union of the particles, asstrong,weak,friable,earthy, etc.

Having finished our preliminary observations on the characteristics of rocks, we are now about ready to begin a systematic study of the rocks themselves; but it is needful first to say a few words about the classification of rocks, since upon this depends not only the order in which we shall take the rocks up, but also the ideas that will be imparted concerning their relations and affinities. The classifications which have been proposed at different times are almost as numerous as the rocks themselves. Some of these are confessedly, and even designedly, artificial, as when we classify stones according to their uses in the arts, etc. But we want something more scientific, anaturalclassification; that is, one based upon the natural and permanent characteristics of rocks. Rocks have been classified according to chemical composition, mineralogical composition, texture, color, density, hardness, etc.; but these arrangements, taken singly or all combined, are inadequate.

Anaturalclassification may be defined as a concise and systematic statement of the natural relations existing among the objects classified. Now the most important relations existing among rocks are those due to their different origins. We must not forget that lithology is a branch of geology, and that geology is first of all adynamicalscience. The most important question that can be asked about any rock is, not What is it made of? butHowwas it made? What were the general forces or agencies concerned in its formation? Rocks are the material in which the earth’s history is written, and what we want to know first concerning any rock is what it can tell us of the condition of that part of the earth at the time it was made and subsequently.


Back to IndexNext