Chapter 5

Abb. 13.Faradayinduziert Ströme in einer rotierenden Kupferscheibe.

Abb. 13.Faradayinduziert Ströme in einer rotierenden Kupferscheibe.

An die Entdeckung der magnetischen und der galvanischen Induktion mußte sich die Frage anschließen, ob nicht auch die Reibungselektrizität Induktionswirkungen hervorzurufen vermöge. Diese Frage wurde nicht durchFaradaysondern durch andere Forscher86und zwar in bejahendem Sinne beantwortet. Dem entscheidenden Versuch lag folgende Anordnung zugrunde. Der Entladungsstrom einer Batterie vonLeydenerFlaschen wurde durch eine Drahtspirale geführt. Diese Spirale befand sich in einem Glaszylinder, um den man einen zweiten Draht gewickelt hatte. Verband man die Enden dieses zweiten Drahtes mit dem elektrischenLuftthermometer (Abb.14), so machte sich bei jeder Entladung derLeydenerBatterie eine Wärmewirkung bemerkbar. Der induzierte Strom ließ sich auch dadurch nachweisen, daß man den zweiten Draht in genügend weiter Entfernung von den beiden Spiralen um eine Stahlnadel leitete. Letztere wurde beim Entladen derLeydenerBatterie magnetisiert.

Abb. 14. Nachweis des induzierten Stromes mit Hilfe des Luftthermometers.

Abb. 14. Nachweis des induzierten Stromes mit Hilfe des Luftthermometers.

Gleich nach der Beendigung der Versuche, die zur Entdeckung der magnetischen Induktion geführt hatten, legteFaradaysich die Frage vor, ob nicht die Erde durch ihren Magnetismus gleiche Wirkungen auf bewegte Leiter wie ein Magnet hervorzubringen vermöge. Der Nachweis, daß dies der Fall ist, erfolgte noch im Jahre 1832. Dieser Nachweis erregte durch die große Ausdehnung, welche das Gebiet der elektrischen Erscheinungen dadurch erfuhr, ein Aufsehen, wie es selten eine wissenschaftliche Entdeckung hervorgerufen hat. Berücksichtigt man nämlich die Allgegenwart des Erdmagnetismus, so gelangt man durch den vonFaradaygeführten Nachweis zu dem auffallenden Schluß, daß kein Stück Metall in Berührung mit anderen ruhenden oder in anderer Richtung bewegten Metallstücken bewegt werden kann, ohne daßelektrische Ströme auftreten. »Wahrscheinlich«, fügtFaradayhinzu, »finden sich an den Dampf- und an anderen Maschinen magnetelektrische Kombinationen, welche Wirkungen hervorbringen, die niemals bemerkt oder wenigstens nie verstanden worden sind«. Auch darauf wiesFaradayhin, daß da, wo Wasser fließt, elektrische Ströme erzeugt werden müssen. Es sei nicht unwahrscheinlich, meint er, daß fließendes Wasser von großer Ausdehnung wie der Golfstrom vermöge der durch den Erdmagnetismus erzeugten magnetelektrischen Induktionsströme einen merklichen Einfluß auf die Gestalt der magnetischen Abweichungslinien ausübe.

Sehen wir nun, auf welche WeiseFaradayder Nachweis der induzierenden Wirkung des Erdmagnetismus auf bewegte leitungsfähige Massen gelang. Ein spiralig gewundener Kupferdraht wurde durch lange Drähte mit einem Galvanometer verbunden. In die Höhlung der Spirale steckteFaradayeinen Eisenzylinder, dem durch Ausglühen jede Spur von Magnetismus genommen war. Der Draht mit dem Zylinder wurde in die Richtung der Inklinationsnadel gebracht. Drehte man darauf die Spule mit dem Zylinder um 180°, so geriet die Galvanometernadel in Schwingungen, welche durch mehrmalige Wiederholung der Umkehrung sehr verstärkt werden konnten. Wurde der Eisenstab entfernt und der Schraubendraht allein umgekehrt, so zeigte sich keine Wirkung. Der beim ersten Versuche angezeigte Strom war somit eine Folge der induzierenden Kraft des Erdmagnetismus, durch den der Eisenzylinder zu einem Magneten geworden war. Drehte man den Zylinder um 180°, so fand auch eine Polumkehrung statt. Der Versuch entsprach somit ganz der durch Abbildung12erläuterten Elektrizitätserregung durch Magnetismus.

Wurde der Schraubendraht allein in die Richtung der Inklinationsnadel gebracht und ein weicher Eisenzylinder hineingesteckt und herausgezogen, so gab die Galvanometernadel jedesmal einen Ausschlag. Wurde der Schraubendraht dagegen rechtwinklig zur Richtung der Inklinationsnadel eingestellt, so brachte das Hineinstecken und Herausziehen des Eisenstabes keine Wirkung auf das Galvanometer hervor. Der zweite dieser beiden zuletzt erwähnten Versuche lieferte somit den deutlichen Beweis, daß die beim ersten Versuch auftretende Elektrizität nur auf die Wirkung des Erdmagnetismus zurückgeführt werden konnte.

Diese günstigen Ergebnisse ließen erhoffen, die elektrische Induktion durch Erdmagnetismus direkt, d. h. ohne Vermittlungeines zunächst von der Erde magnetisierten Eisenstabes hervorrufen zu können. Folgende Versuchsanordnung führteFaradayzum Ziel. Ein etwas dickerer Kupferdraht wurde mit seinen Enden an den Enden der Galvanometerdrähte befestigt und dann zu einem Rechteck gebogen. Wie die Abbildung15zeigt, lag das Galvanometer in der Mitte der in der Richtung des magnetischen Meridians verlaufenden Längsseite des Rechtecks. Die zweite Längsseite lag westlich vom Galvanometer. Wurde darauf das Rechteck, das zusammen mit dem Galvanometer einen geschlossenen Stromkreis bildete, um die mit dem Galvanometer verbundene Seite rasch gedreht, so daß die anfangs westlich vom Galvanometer liegende Rechteckseite östlich zu liegen kam, so ging ein Strom von Nord nach Süd durch den ruhenden Drahtabschnitt. Wurde das Rechteck in die ursprüngliche Lage zurückgebracht, so zeigte die Nadel an, daß der Stromkreis in entgegengesetzter Richtung von Elektrizität durchflossen wurde, die nichts anderes als die induzierende Wirkung des Erdmagnetismus zur Ursache haben konnte.

Abb. 15.Faradayweist die induzierende Wirkung des Erdmagnetismus nach.

Abb. 15.Faradayweist die induzierende Wirkung des Erdmagnetismus nach.

HatteFaradayMagnetinduktionsströme dadurch erhalten, daß er eine Kupferscheibe zwischen den Polen eines Stahlmagneten rotieren ließ, so lag nach dem Erfolg der soeben geschilderten Bemühungen der Gedanke nahe, auch bei jenem Versuche den Erdmagnetismus an die Stelle der von dem künstlichen Magneten ausgehenden Wirkung treten zu lassen. Die Scheibe wurde so hergerichtet, daß einer der Galvanometerdrähte mit der Achse, der andere vermittelst eines Kollektors mit dem Rande in Verbindung stand. Befand sich die Scheibe in einer mit der Inklinationsrichtung zusammenfallenden Ebene, so brachte die Drehung der Scheibe keine Wirkung auf das Galvanometer hervor. Wurde sie nur um wenige Grade gegen die Inklinationslinie geneigt, so zeigte die Nadel einen induzierten Strom an. Betrug der Winkel, den die Scheibe mit der Inklinationsnadel machte, 90 Grad, so besaß die erzeugte Elektrizität für eine gegebene Geschwindigkeit der Umdrehung ihr Maximum.

Auf solche Weise wurde die rotierende Kupferscheibe zu einer neuen Elektrisiermaschine, die zwar weit schwächer wirktewie die gewöhnliche Maschine, dafür aber einen konstanten Strom lieferte. Daß dieser durch den Erdmagnetismus erzeugte elektrische Strom imstande ist, das Nervensystem zu beeinflussen, wies schonFaradaynach. Durch andere Physiker87wurde dieser Strom unter Anwendung mehrerer mit Eisenkernen versehener Kupferspiralen in solchem Maße verstärkt, daß dadurch Wasser zersetzt und kräftige Erschütterungen des Organismus hervorgerufen werden konnten.

Die grundlegenden Untersuchungen über die induzierende Wirkung der Elektrizität und des Magnetismus fanden ihren Abschluß inFaradaysEntdeckung der Selbstinduktion. Es war den Physikern nicht entgangen, daß der Funke, den man bei der Unterbrechung eines galvanischen Stromes erhält, nur schwach ist, wenn der Stromkreis aus einem kurzen Draht besteht. Besitzt dagegen der Schließungsdraht eine bedeutende Länge, so nimmt der Funke an Stärke zu. Ähnlich verhält es sich mit den physiologischen Wirkungen. So wurdeFaradayauf die zunächst ganz rätselhafte Tatsache aufmerksam, daß man keinen elektrischen Schlag erhält, wenn man die beiden Platten einer Batterie durch einen kurzen Draht verbindet, während man bei Anwendung eines längeren, um einen Elektromagneten geschlungenen Drahtes beim jedesmaligen Öffnen einen kräftigen Schlag empfindet. Rätselhaft war die Erscheinung besonders deshalb, weil doch ein längerer Draht durch seinen Widerstand den Strom schwächt, so daß man vor dem Paradoxon stand, daß man von dem starken Strom einen schwachen Funken und Schlag, von dem schwachen Strom dagegen kräftigere Wirkungen erhielt.

Abb. 16.FaradaysNachweis des Extrastroms.

Abb. 16.FaradaysNachweis des Extrastroms.

In der neunten Reihe seiner Experimentaluntersuchungen, die er im Jahre 1835 veröffentlichte, lieferteFaradayden Nachweis, daß diese Erscheinung als ein besonderer Fall der von ihm entdeckten Induktionsphänomene aufzufassen ist.Faradaybediente sich einer Versuchsanordnung, welche durch die beistehende Abbildung verdeutlicht wird. Z und C sind die Zink- und die Kupferplatte einer Batterie. Von diesen Platten gehen Drähte nach zwei mit Quecksilber gefüllten Näpfchen G und E, in denen der Kontakt vollzogen und unterbrochen wird. Die Berührung erfolgte zwischen Quecksilber und Kupfer, weil in diesem Falle der Funken bedeutend glänzender ist. A und B sind die Enden des langen, durch die Punktierung angedeuteten Schraubendrahtes D. N und P sind Querdrähte für einen Zweigstrom. In letzteren wird bei x ein Galvanometer, ein Platindraht oder ein Apparat für Elektrolyse eingeschaltet.

Ist der Stromkreis geschlossen, so geht durch die Zweigleitung von P nach N ein Zweigstrom, welcher die Nadel abzulenken strebt. Diese Ablenkung verhinderteFaradaydurch einen kleinen Stift, an den sich die Nadel anlegte, sodaß sie in ihrer natürlichen Lage blieb, die sie vor der Einwirkung des Stromes besaß. Wurde darauf der Strom bei einem der Quecksilbernäpfchen G oder E unterbrochen, so wich die Nadel in dem Augenblick stark nach der entgegengesetzten Seite ab. Daß die Ablenkung entgegengesetzt der Ablenkung durch den primären Strom erfolgte, lieferte den Beweis, daß durch die Zweigleitung im Momente der Unterbrechung ein Strom geht, dessen Richtung derjenigen des primären Stromes entgegengesetzt ist.Faradaynannte diesen im Momente der Unterbrechung auftretenden Strom »Extrastrom«, ein Name, der sich in der Wissenschaft erhalten hat.

Den Extrastrom wiesFaradayauch durch das Auftreten von Wärme und von chemischer Aktion nach. Er brachte an die Stelle des Galvanometers einen dünnen Platindraht, an dem bei geschlossener Kette keine Wirkungen auftraten. Wurde dann bei G oder E der primäre Strom unterbrochen, so geriet der Platindraht ins Glühen, bei geringer Länge schmolz er sogar. Dieser Versuch ergab jedoch nichts über die Richtung des Extrastromes. Eine neue Wirkung dieses Stromes, die zugleich seine Richtung erkennen ließ, konnteFaradaydurch die Einschaltung eines Zersetzungsapparates nachweisen.

Bei x wurde in die Zweigleitung Jodkaliumstärkepapier gebracht. War der primäre Strom geschlossen, so strömte die gesamte Elektrizität durch A D B und es fand bei x keine chemische Zersetzung statt. Sobald jedoch bei G oder E der Kontakt aufgehoben wurde, trat bei F Zersetzung des Jodkaliums ein. Das freigewordene Jod erschien am Drahte N und rief dort Blaufärbung der Stärke hervor, ein Beweis, daß der im Momente der Unterbrechung des Batteriestroms durch die Querleitung gehende Strom eine dem primären Strome entgegengesetzte Richtung besitzt. Da an der Unterbrechungsstelle bei E oder G jedesmalein heller Funken zu beobachten ist, so folgt daraus, daß nur ein Teil des Extrastroms bei x durch den Zweigdraht geht.

Die Entstehung des Extrastroms erklärteFaradayin folgender Weise: Wenn ein Strom, welcher durch die Spirale D fließt, unterbrochen wird, so wird er in sämtlichen Windungen rasch abnehmen. Zieht man nun zunächst eine einzelne Windung der Spirale in Betracht, so wird der in dieser Windung verschwindende Strom in den benachbarten Windungen einen gleichgerichteten Strom hervorrufen. Diese Erscheinung wiederholt sich in sämtlichen Teilen der Spirale. Infolgedessen summieren sich die erzeugten Induktionsströme. Da letztere ferner dem primären Strome gleichgerichtet sind, so müssen sie bei plötzlicher Unterbrechung des letzteren in der Zweigleitung in einer Richtung fließen, die derjenigen, welche der primäre Strom besaß, entgegengesetzt ist.

Faradayging bei der Untersuchung des Extrastroms oder der Selbstinduktion noch einen Schritt weiter. Da ein elektrischer Strom auch im Augenblicke seines Beginns induzierend wirkt, so muß auch, wenn der Stromkreis geschlossen wird, ein Extrastrom auftreten. Und zwar muß er, da seine Richtung der vorigen entgegengesetzt sein wird, den primären Strom schwächen. Diese Wirkung muß nachFaradaysAusdruck »ein dem Umgekehrten von einem Schlag oder Funken entsprechendes Ergebnis hervorbringen«. Es war nicht leicht, die Mittel zu ersinnen, die zum Erkennen solcher negativen Resultate sich eigneten. Trotzdem gelang esFaradaysowohl durch elektrolytische als auch durch Galvanometerversuche den bei der Vollziehung des Kontakts auftretenden Extrastrom zu erkennen. So wurde, um die zweite Art des Nachweises zu führen, bei x (Abb.16) ein Galvanometer eingeschaltet, während der Kontakt bei G und E vorhanden, der primäre Strom also geschlossen war. Die Nadel erfuhr dadurch eine Ablenkung und wurde jetzt durch einen Stift gehemmt, so daß sie wohl weiter ausschlagen, aber nicht in ihre alte Lage zurückkehren konnte. Bei Unterbrechung des Kontaktes war natürlich keine Wirkung sichtbar. Wurde der primäre Strom jetzt wieder geschlossen, so wich die Nadel von dem Hemmstift ab, so daß sie also noch weiter aus ihrer ursprünglichen Lage entfernt wurde, als es durch den konstanten Strom geschehen war. Durch diesen zeitweisen Überschuß des Stromes in der Querleitung war somit die vorübergehende Schwächung, welche die Elektrizität im ersten Momente, beim Durchlaufen des Schraubendrahts in D erfuhr, nachgewiesen.

FaradaysUntersuchungen betrafen nicht immer neue, von ihm erschlossene Forschungsgebiete. Wir sehen ihn auch bemüht, tiefer in das Wesen längst bekannter Erscheinungen einzudringen. So sind die XII. und die XIII. Reihe seiner Experimentaluntersuchungen dem Leitungsvermögen und der Entladung gewidmet. Zunächst betontFaraday, daß es zwischen Leitern und Nichtleitern keinen wesentlichen Unterschied gibt. Beide Ausdrücke bezeichnen »nur äußerste Grade eines gemeinsamen Zustandes.« Betrachte man das schwache Eindringen der Elektrizität in Schwefel und Schellack als Folgen ihres geringen Leitungsvermögens, so könne man andererseits den Widerstand, den Metalldrähte dem Durchgang der Elektrizität darbieten, als Isolationsvermögen ansehen. Man habe demnach weder bei dem einen noch bei dem anderen Extrem, weder bei der Isolation, noch bei der Leitung, den Fall der Vollkommenheit.

Abb. 17Abb. 17.FaradaysVersuch über die Entladung durch Gase.

Abb. 17.FaradaysVersuch über die Entladung durch Gase.

Unter Berücksichtigung dieser Tatsache gelang esFaraday, den »elektrischen Rückstand« zu erklären. Man versteht darunter die schon im 18. Jahrhundert88bekannt gewordene Erscheinung, daßeine Leydener Flasche, selbst geraume Zeit nachdem sie entladen ist, wieder eine Entladung gibt, ja daß man die Entladung sogar mehrere Male wiederholen kann.Faradayerklärte den Rückstand daraus, daß die Elektrizität von den Belegungen aus in die isolierende Masse, die nur ein geringeres Leitungsvermögen besitzt, langsam eindringt. Nach der Entladung wandere die Elektrizität ebenso allmählich aus dem Isolator in die Belege, wodurch eine neue Entladung möglich sei89.

Sehr eingehend beschäftigt sichFaradayauch mit der »zerreißenden Entladung«, worunter er die Entladung in Gestalt von Funken und Lichtbüscheln versteht. Daß die elektrische Schlagweite bei gleichem Druck und gleicher Temperatur für verschiedene Gase verschieden groß ist, beweist er durch folgenden sinnreichen Versuch, bei dem der Funken in der Luft oder innerhalb eines mit einem beliebigen Gase gefüllten Glasgefäßes überspringen konnte. a ist dieses Glasgefäß. Am Boden des letzteren befindet sich eine Messingkugel l und darüber eine kleinere Messingkugel an einem verschiebbaren Stabe d. Außerhalb des Gefäßes befinden sich zwei gleich große Messingkugeln L und S an isolierenden Stützen (h und i), deren Abstand ebenfalls geändert werden kann. n ist das Ende eines Konduktors, der durch eine Elektrisiermaschine positiv oder negativ geladen wird. Der Konduktor ist durch die Drähte o und p mit den kleineren Kugeln verbunden. Der Drahtqrstellt die leitende Verbindung zwischen den größeren Kugeln und der Erde her.

Die Entladung konnte somit zwischen s und l oder zwischen S und L stattfinden. Der Abstand v und u wurde verändert, bis der Funke zwischen beiden Kugelpaaren gleich oft übersprang. In diesem Fall konnte man annehmen, daß der Widerstand der Luft und des in der Glocke befindlichen Gases gleich groß ist. WählteFaradayz. B. im einen Falle Wasserstoff, im anderen Chlorwasserstoff, und war die Schlagweite in beiden Gasen 1,6 cm, so betrug sie für das in der Luft befindliche Kugelpaar 0,99 cm und 3,5 cm. Die Schlagweite war somit in Wasserstoff im Verhältnis 1,6 : 0,99 größer, im Chlorwasserstoff im Verhältnis 3,5 : 1,6 kleiner als in der Luft.

Mit zunehmender Dichtigkeit des hindernden Gases nahm die Schlagweite im allgemeinen ab. Auch darauf wiesFaradayhin, daß die Farbe des Funkens und der Büschelentladung von dem Gase, in dem sie sich bilden, abhängt. Sie ist in der Luft bläulichweiß, in Wasserstoff rot, in Kohlendioxyd grünlich usw. Außerdem ist die Natur der Metalle, zwischen welchen die Entladung stattfindet, von großem Einfluß auf die Farbe des Funkens. Zwischen Funken- und Büschelentladung finden ferner alle Übergänge statt.

Faradaysweitere Bemühungen liefen darauf hinaus, alle Zweifel zu beseitigen, ob man es bei den auf so verschiedene Weise erzeugten Elektrizitätsarten auch stets mit ein und derselben Naturkraft zu tun habe. Indem er ihre sämtlichen Wirkungen zusammenstellte und verglich, gelangte er zur Überzeugung, »daß die Elektrizität, aus welcher Quelle sie auch entsprungen sei, identisch ist in ihrer Natur90.«

Faradaykonnte, als er im Jahre 1833 die Frage nach der Identität der Elektrizitäten verschiedenen Ursprungs aufwarf, fünf Elektrizitätsarten unterscheiden, nämlich die galvanische Elektrizität, die Reibungselektrizität, die Magneto-, Thermo- und die tierische Elektrizität. In Betracht gezogen wurden für sämtliche Arten die physiologische Wirkung, die Ablenkung der Magnetnadel, das Magnetisieren, die Erzeugung von Funken, die Wärmeerregung, die elektrochemische Wirkung usw.

Wie schon hervorgehoben, gelangteFaradayzu dem Ergebnis, daß die fünf aufgeführten Elektrizitätsarten nicht in ihrem Wesen, sondern nur dem Grade nach verschieden sind. »Sie variieren«, fügt er hinzu, »nach Maßgabe der veränderlichen Umstände nach Quantität und Intensität.«

Insbesondere bemühte sichFaraday, nachzuweisen, daß die Reibungselektrizität die gleiche chemische Wirkung hervorruft wie die galvanische. Bei den Versuchen91, dieFaradayfür diesen Zweck ersann, wollen wir noch etwas verweilen.

Auf einer Glasplatte brachte er zwei Stanniolstreifen a und b an. Die Platte a wurde durch den Draht c mit dem positivenKonduktor der Elektrisiermaschine, die Platte b durch den Draht g mit einer Ableitung für die Elektrizität verbunden.

Auf den Stanniolplatten ruhten zwei winklig gebogene, verschiebbare Drähte, zwischen deren Enden p und nFaradaydie zu untersuchenden Substanzen brachte. Wurde z. B. ein Tropfen Kupfervitriollösung in die Mitte der Glasplatte zwischen p und n gebracht und die Elektrisiermaschine in Bewegung gesetzt, so zeigte sich das Drahtende p nach etwa zwanzig Umdrehungen ganz mit Kupfer überzogen.

Abb. 18.Faradayuntersucht die chemische Wirkung der Reibungselektrizität.

Abb. 18.Faradayuntersucht die chemische Wirkung der Reibungselektrizität.

Brachte man durch Indigo blau gefärbte Salzsäure an die Stelle der Kupferlösung und wiederholte den Versuch, so zeigte sich schon bei einer einzigen Umdrehung der Maschine um p die bleichende Wirkung des durch die Zerlegung der Salzsäure entwickelten Chlors.

Darauf wurde Jodkaliumstärkekleister auf die Glasplatte zwischen p und n gebracht. Beim Drehen der Maschine zeigte sich bei p eine blaue Färbung, ein Beweis, daß dort Jod entwickelt wurde, das bekanntlich im freien Zustande Stärkekleister blau färbt.

Endlich wurde noch die Zersetzung von Glaubersalz durch die Reibungselektrizität auf folgende Weise dargetan. Brachte man einen mit einer Lösung von Glaubersalz getränkten Streifen Kurkumapapier zwischen p und n, so wurde das Papier nach einigen Umdrehungen durch das entstandene Alkali braunrot gefärbt.

Benutzt man die galvanische Elektrizität, so verlaufen die geschilderten Zersetzungen in derselben Weise.

Daß ein durch magnetelektrische Induktion erregter Strom imstande ist, ebenso wie die galvanische und wie die Reibungselektrizität einen Draht zu erhitzen, hatteFaradayschon 1832 dargetan.Pixiilieferte den Nachweis, daß durch Magneto-Elektrizität Wasser in Wasserstoff und Sauerstoff zerlegt werden kann. FernerkonstruiertePixii92die erste, schon sehr kräftige Magnetinduktionsmaschine (s. Abb.19). Sie besaß die Einrichtung, daß der Magnet um eine den Schenkeln parallele Achse rotierte. Die Induktionsspirale umschloß ein hufeisenförmiges Eisenstück und blieb in Ruhe, während die Pole des rotierenden Magneten sich den Schenkeln des umwickelten Hufeisens abwechselnd näherten und sich davon entfernten.

Unter dem Magneten befand sich ein Drehwerk und, wie die nebenstehende Abbildung zeigt, ein Kommutator, welcher die Aufgabe hatte, die den Spulen entnommenen Ströme mittelst Schleiffedern in einen gleichgerichteten Strom zu verwandeln. Dieser Kommutator wurde vonAmpèrehinzugefügt.Stöhrergab der Maschine die noch heute gebräuchliche Einrichtung, indem er den Magneten befestigte und die mit Eisenkernen versehenen Spulen sich drehen ließ.

Abb. 19. Die erste magnetelektrische Maschine.

Abb. 19. Die erste magnetelektrische Maschine.

Die thermoelektrischen Ströme besaßen zu der Zeit, alsFaradaydie Elektrizitätsarten verglich, noch nicht den genügenden Grad von Intensität, um alle Wirkungen der galvanischen und der Reibungselektrizität hervorzurufen.Faradaymußte sich hier auf die Untersuchung der magnetischen und der physiologischen Wirkungen beschränken. Dagegen waren bezüglich der tierischen Elektrizität außer der magnetischen und der physiologischen die chemische Wirkung bekannt und Funkenbildung von einigen Seiten beobachtet worden.

Durch den Vergleich der elektrischen Wirkungen wurdeFaradaysAufmerksamkeit besonders auf die chemische Wirkung der Elektrizität gelenkt. Zunächst schuf er für dieses Gebiet die noch heute gebräuchlichen Benennungen93. Die Ein- und Austrittsstelle des Stromes nannte er Elektroden; der zu zersetzende Körper wurde Elektrolyt, der Vorgang selbst Elektrolyse, und die Produkte der Zersetzung wurden Ionen (d. h. die Wandernden) genannt. DasAnion, z. B. der bei der Zerlegung des Wassers auftretende Sauerstoff, wandert an die Anode, das ist die Eintrittsstelle des Stromes, während das Kation, in dem angezogenen Beispiel der Wasserstoff, an die Kathode oder Austrittsstelle geht. Ferner hatFaradaydie beiden Arten der Leitung, die metallische und die elektrolytische, zum ersten Male scharf unterschieden.

Zunächst wandteFaradaysich in der VII. Reihe seiner Experimentaluntersuchungen94, durch welche er die Grundlage für die heutigen Lehren geschaffen hat, den allgemeinen Bedingungen der elektrochemischen Zersetzung zu.

Es ergab sich, daß die zersetzende Wirkung des Stromes der Elektrizitätsmenge proportional ist und nicht etwa von der Konzentration des Elektrolyten oder von der Größe der Elektroden abhängt95. »Die zersetzende Wirkung des Stromes« führtFaradaynäher aus, »ist konstant für eine konstante Menge Elektrizität, ungeachtet der größten Verschiedenheit in deren Abstammung, der Intensität, der Größe der Elektroden, der Natur der durchströmten Leiter usw.«

Auf dieses Gesetz gründeteFaradayeinen Apparat, welcher die hindurchgegangene Elektrizitätsmenge zu messen gestattet. Durch die Seiten einer oben geschlossenen, graduierten Röhre (siehe Abb.20) werden zwei in Platten endigende Platindrähte geführt und eingeschmolzen. Die so vorbereitete Meßröhre wird in eine der Mündungen einer zweihalsigen Flasche gesteckt. Letztere wird etwa zur Hälfte mit Wasser gefüllt, das einen Zusatz von Schwefelsäure erhält. Durch entsprechendes Neigen wird die Röhre mit dieser Flüssigkeit gefüllt. Leitet man darauf einen elektrischen Strom durch das Instrument, so sammelt sich das an den Platinplatten entwickelte Gas in dem oberen Teile der Röhre und kann hier gemessen werden.

Abb. 20.FaradaysVoltaelektrometer.

Abb. 20.FaradaysVoltaelektrometer.

SchonDavy, dem Begründer der Elektrolyse, war es aufgefallen, daß neben der primären Zersetzung einer chemischen Verbindung noch sekundäre Erscheinungen auftreten, die darin bestehen, daß die Ionen im Augenblicke des Freiwerdens mit den Elektroden, dem Elektrolyten oder auch dem Lösungsmittel chemische Verbindungen eingehen. Auch diesem Vorgange widmeteFaradayeine auf zahlreiche Substanzen sich erstreckende Untersuchung96, aus der einige Beispiele hier Platz finden mögen. Bei der Zersetzung von Salzsäure unter Anwendung von Platinelektroden verband sich das Chlor zum Teil mit dem Platin, ein anderer Teil wurde gelöst. ElektrolysierteFaradayChlornatrium in wässeriger Lösung, so wurde an der positiven Elektrode Chlor, an der negativen dagegen Wasserstoff und Natron abgeschieden. Wasserstoff und Natron hatten sich durch die Einwirkung des im primären Vorgang abgeschiedenen Natriums auf Wasser gebildet. Ähnlich wie die Chlorverbindungen verhielten sich Jodwasserstoff und die Jodide.

Indes auch bei geschmolzenen Salzen blieben sekundäre Wirkungen nicht aus. Bei der Zerlegung von Zinnchlorür z. B. wirkte das an der Anode sich ausscheidende Chlor auf das dort befindliche Chlorür und verwandelte es in Zinnchlorid, während an der Kathode metallisches Zinn ausgeschieden wurde.

Abb. 21.Faradayzerlegt Zinnchlorür zum Nachweis des elektrolytischen Grundgesetzes97

Abb. 21.Faradayzerlegt Zinnchlorür zum Nachweis des elektrolytischen Grundgesetzes97

Um Vergleiche über die zersetzende Wirkung des elektrischen Stromes anzustellen, brachteFaradayseinen von ihm als Voltaelektrometer oder kürzer als Voltameter bezeichneten Apparat in denselben Stromkreis, in dem sich der zu untersuchende Elektrolyt, z. B. Zinnchlorür (SnCl2), befand. Der Platindraht P tauchte in das geschmolzene Chlorür und wurde (s. Abb.21) mit dem negativen, das Voltameter N dagegen mit dem positiven Pole einer galvanischen Batterie verbunden. Nachdem sich eine genügendeMenge Gas in N gesammelt hatte, wurde gemessen und das an der Kathode ausgeschiedene Zinn gewogen. In dem vonFaradaymitgeteilten Beispiele98hatten sich 3,85 Kubikzoll (0,49742 Gran) Knallgas gebildet, während die negative Elektrode eine von dem ausgeschiedenen Zinn herrührende Gewichtszunahme von 3,2 Gran aufwies. Aus der Öffnung des erhitzten Röhrchens entwichen die an der Anode infolge des sekundären Vorgangs entstehenden Dämpfe von Zinnchlorid. Dem Gewicht des Wasserstoffs (1/9von 0,49742) entsprach die 57,9fache Menge Zinn, eine Zahl, die mit dem Äquivalentgewicht des Zinns nahezu übereinstimmt. Dieser und zahlreiche ähnliche Versuche ergaben als elektrolytisches Grundgesetz, daß die Abscheidung der Ionen durch ein- und denselben Strom stets im Verhältnis der chemischen Äquivalente stattfindet.

Durch seine Arbeit über die zersetzende Wirkung der galvanischen Säule gelangteFaraday, noch bevorRobert Mayerdas Gesetz von der Erhaltung der Energie aussprach, zu Anschauungen, die sich mit diesem allumfassenden Prinzip vollkommen decken. »Die Kontakttheorie«, so lauten seine Worte99, »nimmt an, daß ohne irgend eine Änderung der wirkenden Substanz und ohne den Verbrauch von irgend einer Triebkraft ein Strom gebildet werden könne, der imstande ist, einen mächtigen Widerstand zu überwinden und Körper zu zerlegen. Es wäre dies in der Tat die Erschaffung einer Kraft aus nichts. Es gibt mancherlei Vorgänge, bei denen die Erscheinungsform sich in der Weise ändert, daß eine Umwandlung einer Kraft in eine andere stattfindet. Auf diese Weise können wir chemische Kräfte in elektrischen Strom oder diesen in chemische Kraft verwandeln. Die schönen Versuche vonSeebeck100beweisen den Übergang von Wärme in Elektrizität, und andere vonOerstedt101und mir angestellte Experimente die gegenseitige Verwandlungsfähigkeit von Elektrizität und Magnetismus. Allein in keinem Falle, nicht einmal bei den elektrischen Fischen, findet eine Erschaffung oder eine Erzeugung von Kraft statt, ohne einen entsprechenden Verbrauch von etwas anderem.«Diese Worte lassen erkennen, daß große wissenschaftliche Wahrheiten, noch ehe sie zum vollen Durchbruch gelangen, oft mehr oder weniger deutlich in dem allgemeinen Bewußtsein der Zeit schlummern.

Zugleich ersehen wir, welche StellungFaradayzu der älteren, besonders von den italienischen und den deutschen Physikern vertretenen Kontakttheorie einnahm.Voltahatte geschwankt und als Quelle der galvanischen Elektrizität bald den Kontakt der Metalle, bald ihre Berührung mit den Leitern zweiter Klasse angenommen.Zamboni, der Erfinder der Trockensäule, hielt die gegenseitige Berührung der Metalle und nicht die Berührung der Metalle mit den Flüssigkeiten für die Ursache des Stromes.Faradaydagegen hatte durch den ganzen Gang seiner wissenschaftlichen Entwicklung gelernt, mehr auf die chemischen Vorgänge zu achten. Er gelangte zu der Überzeugung: »Wo keine chemische Aktion ist, da ist auch kein Strom.«

Einen Bundesgenossen in seinem Kampfe gegen die Kontakttheorie fandFaradayin dem Franzosende la Rive102. Nachde la Riveist die chemische Affinität die Ursache des galvanischen Stromes. Außerdem seien nur mechanische und thermische Wirkungen imstande, Elektrizität zu erzeugen. Seine Lehre faßtede la Rivein folgendem Satz zusammen: »Werden zwei verschiedenartige Körper in eine Flüssigkeit oder in ein Glas gebracht, das auf beide oder auch nur auf einen dieser Körper chemisch einwirkt, so kommt Elektrizitätserregung zustande. Dabei wird der chemisch angegriffene Körper negativ, der angreifende positiv elektrisch«.

Gleichde la RivegehtFaradayin der 16. Reihe seiner Experimentaluntersuchungen, die er gleich der 17. ausschließlich der vorliegenden Frage widmet, von der Ansicht aus, daß der bloße Kontakt nicht zur Erregung des Stromes beitrage, abgesehen davon, daß er die chemische Aktion einleite.

Faradaywar eben schon von dem Gesetze der Erhaltung der Energie beherrscht, noch bevor es zum klaren Ausdruck gekommen und zum Allgemeingut der Physik geworden war. Dafür zeugt die Fassung, dieFaradayder chemischen Theorie gibt. An dem Orte der Elektrizitätsentwicklung wirken nach ihm die sich berührenden Teilchen chemisch aufeinander ein. Der Betragder erzeugten Stromkraft sei ein Äquivalent der angewandten chemischen Kraft. In keinem Falle könne ein elektrischer Strom erzeugt werden ohne den Verbrauch eines gleichen Betrages chemischer Kraft und »endend mit einem gegebenen Betrag von chemischer Veränderung«.

Vom Standpunktede la RivesundFaradaysließ sich derVoltasche Fundamentalversuch nur erklären durch die Bildung einer oberflächlichen Oxydschicht unter dem Einfluß der feuchten atmosphärischen Luft. Und wirklich haben spätere Versuche bewiesen, daß die Spannung an der Kontaktstelle um so geringer ist, je mehr die Metalle gegen Oxydation geschützt sind. Andererseits reichte die ausschließlich chemische Theorie vom galvanischen Strom doch nicht zur Erklärung aller in Betracht kommenden Erscheinungen aus. Eine vermittelnde Theorie stellte im Jahre 1844Schönbeinauf. Währendde la RiveundFaradayden Ursprung der Elektrizität in tatsächlichen und sichtbaren chemischen Vorgängen erblickten, behaupteteSchönbein, schon die bloße Tendenz zweier Körper, sich chemisch zu verbinden, störe deren elektrisches Gleichgewicht, selbst wenn keine wirkliche Verbindung erfolge. Doch sei ein Strom, der infolge der wirklichen Verbindung zweier Stoffe entstehe, bei weitem stärker als derjenige, der nur durch die Tendenz nach Vereinigung hervorgerufen werde. Als ein Beispiel betrachtetSchönbeindas Verhalten von Zink und Kupfer zu verdünnter Schwefelsäure. Das Zink sei »sauerstoffgierig«. Der Sauerstoff äußere schon eine Anziehung zum Zink, bevor es zu einer Verbindung komme. Dadurch werde noch nicht eine Zersetzung des Wassers hervorgerufen, sondern zunächst eine Richtung seiner Moleküle. Dies geschehe in der Art, daß sich der Sauerstoff jeder Wassermolekel dem Zink zuwende. Dieser Störung des chemischen Gleichgewichtes laufe eine Störung des elektrischen Gleichgewichts parallel, weil das Sauerstoffatom gleichzeitig negativ, das Wasserstoffatom positiv elektrisch werde.

SchönbeinsAnschauungen bilden einen Übergang zu den heute über das Zustandekommen des galvanischen Stromes geltenden Anschauungen, nach welchen eine elektrische Polarität der Wasserteilchen sich nicht erst bildet, sondern schon für sich besteht. Wird, umSchönbeinsBeispiel zu Ende zu führen, in die Flüssigkeit eine zweite Platte gebracht, die »wasserstoffgierig« oder auch nur weniger sauerstoffgierig ist als Zink, so bleibt die Anordnung der Flüssigkeitsteilchen bestehen. Wird jetzt eine leitende Verbindung zwischen dem Zink und dem zweiten Metall hergestellt, so fließt die positive Elektrizität zum Zink und die Zersetzung beginnt, während an den Berührungsstellen die geschilderte Tendenz fortdauert. Mit Recht hatFaradaySchönbeinvorgeworfen, daß er einen andauernden Vorgang wie den galvanischen Strom aus einer Tendenz oder einem bloßen Zustand erklären wolle. Andererseits hatSchönbeinseine Theorie in einer späteren Abhandlung103vom Jahre 1849 soweit ausgebaut, daß, wie schon erwähnt, ihr Grundgedanke sich für die weitere Entwicklung der Wissenschaft als fruchtbar erwiesen hat.Faradayhat sich nach Abschluß seiner in der 16. und 17. Reihe gegebenen Untersuchung mit dem auch jetzt noch nicht völlig geklärten Vorgang nicht weiter beschäftigt.

Von dem Bestreben, wie auf den Gebieten des Galvanismus und der chemischen Aktion, neue Beziehungen zwischen den Kräften aufzudecken, bliebFaradayindessen stets erfüllt. Aus der Überzeugung, daß solche Beziehungen auch zwischen der Elektrizität und dem Lichte bestehen, entsprang sein berühmter Versuch der Magnetisierung des Lichtes104. Nachdem alle Bemühungen, einen unmittelbaren Einfluß des Magneten auf einen gewöhnlichen Lichtstrahl nachzuweisen, erfolglos gewesen waren, brachteFaradayein Stück Glas von besonderer Zusammensetzung zwischen die Pole eines kräftigen Elektromagneten, so daß es über die Ebene dieser Pole hinausragte. Durch das Glas wurde dann in axialer Richtung105ein polarisierter Lichtstrahl geleitet und der analysierende Nicol so gestellt, daß der Strahl erlosch. Wurde jetzt der Elektromagnet erregt, so erhellte sich das Gesichtsfeld. Es konnte aber durch eine entsprechende Drehung des Analysators wieder verdunkelt werden. Die Polarisationsebene des Lichtes hatte somit unter der Wirkung des Elektromagneten eine Drehung erfahren.

Ersetzte man den Elektromagneten durch einen guten Stahlmagneten, so war die Wirkung zwar weniger stark, sie war jedoch noch deutlich vorhanden. Auch durch die bloße Anwendung stromdurchflossener Leiter ließ sich eine Drehung der Polarisationsebene des Lichtes erzielen. Die Einrichtung, welcheFaradayhierbei traf, war die folgende. Stäbe oder Prismen der zu untersuchenden durchsichtigen Substanzen wurden in das Innere eines Solenoids, d. h. eines schraubenförmig gewundenen Drahtes, gebracht. Durch diesen leiteteFaradayden Strom. Der Erfolg war der gleiche wie bei den Versuchen mit Elektromagneten und Stahlmagneten. Wurde nämlich ein polarisierter Lichtstrahl in einer zu seiner Richtung geneigten Ebene von einem elektrischen Strome umkreist, so erfolgte eine Drehung des Strahles um seine Achse in gleicher Richtung mit der Richtung des Stromes. Dies geschah so lange, wie der Strom seinen Einfluß ausübte.

Flüssigkeiten wurden in Röhren untersucht, dieFaradayin das Solenoid hineinsteckte. Als er eine Röhre voll Wasser von gleicher Länge mit dem Solenoid mehr oder weniger aus letzterem herausragen ließ, konnte er den Einfluß der Länge des Diamagnetikums, wie er die das Licht beeinflussende Substanz nannte, ermitteln. Je länger nämlich die der Wirkung des Solenoides ausgesetzte Wassersäule war, um so stärker war auch die Drehung des polarisierten Strahles. Der Betrag der Drehung schien direkt proportional der Länge der Flüssigkeit zu sein, die vom elektrischen Strom umkreist wurde.

BrachteFaradayStoffe in das Solenoid, die schon von Natur ein Drehvermögen besitzen, wie Zucker, Weinsäure und weinsaure Salze, so wurde die vom elektrischen Strom erzeugte Drehung der ursprünglichen hinzugefügt.

»So glaube ich zum ersten Male«, sagtFaradayam Schlusse seiner Abhandlung »eine direkte Beziehung zwischen dem Licht, der Elektrizität und dem Magnetismus festgestellt zu haben«. Das, meint er, sei ein großer Fortschritt auf dem Wege, nachzuweisen, daß »alle Naturkräfte miteinander verknüpft sind und einen gemeinschaftlichen Ursprung haben«.

Die Entdeckung der »Magnetisierung des Lichtes« brachteFaradayauf den Gedanken, den Einfluß des Magnetismus auf sämtliche Stoffe zu untersuchen106. Zunächst wurde ein Stück jenes Glases, das ihm beim vorigen Versuch gedienthatte, zwischen den Polen eines sehr kräftigen Elektromagneten aufgehängt. Das Glas nahm darauf die Querstellunger(siehe Abbildung22) an, ein Beweis, daß es von den Polen abgestoßen wurde, während sich ein Eisenstäbchen infolge einer von den Polen ausgehenden Anziehung in die Verbindungslinie der Pole einstellte. Die weitere Untersuchung ergab, daß alle Stoffe einschließlich der flüssigen und der gasförmigen, sich entweder wie das Eisen oder wie jenes Glas verhalten. Im ersteren Falle nannteFaradayden Stoff paramagnetisch, während er im anderen Falle als diamagnetisch bezeichnet wurde.


Back to IndexNext