Fleur-de-Lis
A
MONG other advantages to be gained by a logical study of the psychology of color is the establishment of more accurate color terms and definitions. If experiments and discussions based on accepted standards and methods of comparisons can be carried on we may hope in time to have as definite expressions of color terms as we now have in music and literature.
All color terms used by artists, naturalists, manufacturers, tradesmen, milliners and the members of our households are as indefinite as one might naturally expect from the utter lack of a logical basis for the whole subject.
Without definitions or means for intelligently naming any color, it is not strange that the terms used in speaking of colors and color effects are so contradictory as to lose much of their force, if perchance they retain anything of their original meaning. For example, probably most people apply the termSHADEto any modification of a color, either a hue, tint or shade.
It is true that a concise and reasonably full dictionary of color terms must be the outcome of long experience in the logical study of the science of color and its use in our every-day lives, and at the best only suggestions can be made at present. But as there must be a beginning and some terms seem to be fairly well established, the following incomplete list of definitions is offered, always subject to amendment by the majority vote, for whenever such changes indicate advance they should be welcomed.
Ray of Light.—The finest supposable element of light impression in the eye.
Beam of Light.—A number of rays.
Standard Colors.—As used in this system of color nomenclature, the best pigmentary imitation of each of the six spectrum colors red, orange, yellow, green, blue and violet and black and white. These are more specifically calledPigmentary Standardsin distinction from spectrum standards.
Spectrum Standards.—The six colors found in the solar spectrum and definitely located by their wave lengths, as follows in the ten millionths of a millimeter. Red, 6571; Orange, 6085; Yellow, 5793; Green, 5164; Blue, 4695; Violet, 4210.
Pigmentary Colors.—All colors used and produced in the arts and sciences. This is in distinction from colors seen in nature, as in flowers and the solar spectrum. The term refers not only to pigments in the strictest sense but to all surfaces coated, painted or dyed artificially.
Pure Colors.—A pure or full color, also called a saturated color, is the most intense expression of that color without the admixture of white or black or gray. All spectrum colors are pure, while no pigmentary color is absolutely pure, but the pigmentary color which approaches most nearly to the corresponding color in the spectrum must be selected as the pigmentary type of purity of that color. For example, the standard for green must be the best possible pigmentary imitation of the spot in the spectrum which by general consent is called green, and so not only for the six standards but for all their combinations which produce the other colors in nature.
In pigmentary colors the term pure is entirely one of relative degree. As processes of manufacture are improved and new chemical discoveries made, there is good reason to believe that we shall have much more intense colors and hence much better imitations of spectrum colors than are at present possible. Therefore as our pigments become purer those now accepted as full colors will in time become tints or broken colors and new standards will be adopted.
Hue.—The hue of a given color is that color with the admixture of a smaller quantity of another color. An orange hue ofred is the standard red mixed with a smaller quantity of orange. With the disks, pure hues are secured only by mixing two standardsadjacentin the spectrum circuit.
For convenience in speaking and writing about colors in this system of color instruction, all the spectrum colors other than the six standard spectrum colors are designated as intermediate spectrum hues, and often for convenience in speaking of them they are called simply spectrum hues. To these are also added the colors between red and violet which are not in the spectrum. When so used the term must be considered as purely technical in this particular relation, because a color between the standard blue and the standard green is in the abstract no more a hue than either of these colors. If two standards not adjacent in the spectrum circuit are combined the result is not apurespectrum hue but always somebrokenspectrum color.
Local Color.—A term applied to the natural color of an object when seen in ordinarily good daylight and at a convenient distance, as a sheet of paper at arms length, a tree at twice its height, etc.
Tint.—Any pure or full color mixed with white, or reduced by strong sunlight. In the disk combinations a spectrum color combined with white.
Shade.—A full color in shadow, i.e., with a low degree of illumination. In disk combinations a spectrum color combined with a black disk produces by rotation a shade of that color. In pigments the admixture of black does not usually produce as satisfactory shades of a color as may be secured with some other pigments, and each artist has his own preferences in making shades of the various colors on his palette.
Scale.—A scale of color is a series of colors consisting of a pure or full color at the center and graduated by a succession of steps to a light tint on one side and a deep shade on the other.
Tone.—Each step in a color scale is a tone of that color, and the full color may be called the normal tone in that scale. In art this word has had such a variety of meaning as to renderit very convenient for Amateur Art Critics, together with such terms as breadth, atmosphere, quality, values, etc., but in the consideration of color it should have this one definite meaning.
Warm Colors.—Red, orange and yellow, and combinations in which they predominate.
Cool Colors.—Usually considered to be green, blue and violet, and the combinations in which they predominate. But it is, perhaps, questionable whether green and violet may properly be termed either warm or cool. The term cool as applied to colors is quite indefinite, except in a general way, but red, orange and yellow are universally considered as warm, and blue and green-blue as cool.
Neutral Gray.—White in shade or shadow. Pure black and white mixed by disk rotation. Black and white pigments mixed do not usually produce a neutral gray, but rather a blue gray.
Warm Gray.—A neutral gray with the admixture of a small quantity of red, orange or yellow.
Cool Gray.—A neutral gray with a small quantity of blue or green-blue.
Green Gray.—A neutral gray having combined with it a small quantity of green. As this color could hardly be classed with either warm or cool grays this fourth class of grays is suggested as helpful in giving definiteness to the more general color expressions.
Broken Colors.—Gray colors, often improperly called broken tints. For simplicity, a tint of a color is described as the pure color mixed with white and a shade as the color mixed with black, and the corresponding broken color is the same color mixed with both white and black or with neutral gray. A tint of a color thrown into a shadow or a shade of a color in bright sunlight gives a broken color. For various reasons a very large proportion of the colors in nature are broken. Broken colors are much easier to combine harmoniously than full colors, or even tints and shades.
In disk combinations when a pure color is combined with both a white and black disk the result will be a broken color. When a color is mixed with both black and white, i.e., with gray, and becomes thereby a broken color, it then belongs to a broken scale and educationally has no place in any pure scale, i.e., a scale in which the key tone is a pure color. Neither has a broken scale of a color any place in a chart of pure scales or spectrum scales.
Neutral Colors.—A term often improperly applied to grays, white, black, silver and gold. See passive colors.
Passive Colors.—A term suggested as covering black, white, silver, gold and very gray colors. The term "neutral colors" is often used in this sense but this is evidently improper if we are to confine the term "neutral gray" to the representation of white in shadow because as soon as a gray has any color in it, it is no longer neutral.
Active Colors.—Those colors neither passive or neutral. Necessarily both the terms "active" and "passive" used in relation to colors must be quite indefinite.
Complementary Colors.—As white light is the sum of all color if we take from white light a given color the remaining color is the complement of the given color. When the eye has been fatigued by looking intently for a few seconds at a red spot on a white wall and is then slightly turned to the wall, a faint tint of a bluish green is seen, and this is called the accidental color of the red, and is supposed to be identical with its complementary color. If with the disks we determine a color which with a given color will produce by rotation a neutral gray, we have the complementary color more accurately than by any other means at present known in the use of pigmentary colors.
Harmony.—Two colors are said to be in harmony or to combine harmoniously if the effect is pleasing when they are in juxtaposition or are used in a composition.
Spectrum Circuit.—If a pigmentary imitation of the solarspectrum with the addition of violet red at the red end and red violet at the violet end be made, and the two ends joined, we shall have a spectrum circuit. This may be in the form of a circle, an ellipse or an oval.
Primary Colors.—In the Brewster theory red, yellow and blue. In the Young-Helmholtz theory red, green and violet are termed primary colors because it is supposed that from these three sensations all color perceptions are experienced. In purely scientific investigations of color perceptions these last three or others which are supposed to serve the same purpose are also called fundamental colors. Practically every spectrum color is a primary, because each has its own wave length.
Secondary Colors.—In the Brewster theory orange, green and purple have been called secondary because it is claimed that they are produced by the combination of primary colors in pairs.
Tertiary Colors.—A term used in the Brewster theory to denote three classes of colors called russet, citrine and olive, made by mixing the secondaries in pairs. These are all broken spectrum colors. The orange and purple produce russet; the orange and green form citrine; the green and purple, olive. There seems to be no good reason for perpetuating the indefinite terms secondaries and tertiaries as applied to color.
Values.—This word is very freely used in discussing effects in works of art, both in color and in black and white. At present it seems to be a very difficult term to define, and yet each artist is quite sure that he can "feel" it, although few will attempt to put into words a definition satisfactory even to themselves. When an engraver, who is also an artist, attempts to interpret nature in black and white on the metal plate or wooden block, he endeavors to reproduce the "values" of the various parts of the subject before him. In doing this he, for one thing, attempts to produce a variety of neutral grays which will express to the eye by means of black and white lines the same tones of color effect as are seen in the several parts of the subject under investigation. If this were the whole problemthe matter would be easily expressed by the disk nomenclature. For instance, if we are to consider a certain red object which may be represented by the standard red disk, we place a medium sized disk of that color on the spindle, and in front of it, smaller disks of white and black united. By rotation the white and black disks become a neutral gray at the center of the red disk. If this gray is made nearly white all observers will agree that the gray is lighter than the red, and if it is nearly black the opinion will be equally unanimous that it is darker than the red. Consequently there evidently must be a gray somewhere between these two extremes which a large majority of experts may agree to be equal in depth or tone to the red, i.e., neither lighter nor darker. But the artist-engraver will insist that to him the term "value" expresses much more than this and that he must use different lines in the sky or distance from those which he uses in the foreground; and some engravers will also insist that two different colors in the foreground must receive different treatment with the graver in order to express their true values. We know that true values of colors are not expressed in a photograph, as the warm colors are too dark and the blue far too light. If the term "value of a color" is to be used as expressing something more than a neutral gray of such a tone as to seem equal to it, then possibly this latter quality must be expressed by the word tone, and yet this use of that word will seem to enlarge its scope beyond its present limits as it now is used to express the relations between the different localities inonescale of color, while this new use will extend to the comparison of tones in various color scales, including neutral grays.
Luminosity.—The luminosity of a color is determined by comparing it with a neutral gray. When a color seems to be of the same brightness as a given neutral gray, i.e., not lighter nor darker, then that gray is its measure of luminosity.
A noted authority says: "No colored object can have the luminosity of a white object reflecting practically the whole ofthe light impinging upon it. Therefore if we take absolute reflection as 100 a fraction of 100 will give the relative luminosity of any body." Luminosity is another expression of the quality above described as forming a prominent feature in the term values.
Potentiality.—The ability or strength of a color to affect other colors by combinations with them. For example, white has a greater potentiality than black, yellow greater than red, and violet the least of all the spectrum colors.
It is a pertinent question whether any quality is involved in this term which is not found in value, tone and luminosity, but it expresses a somewhat different phase of a line of color effects.
Quality.—This term seems to be used rather indefinitely when applied to color, but perhaps it is not far removed from the term hue or kind of color.
Fleur-de-Lis
Color WheelFig. 2.
In the foregoing pages an attempt is made to explain clearly and as briefly as possible the principles on which the Bradley system of color instruction is based, and also to suggest a few definitions necessary to an intelligent discussion of the general subject of Color. Owing to the peculiar nature of the questions involved, demonstration by actual experiment is more convincing than the mere statement of theories can possibly be, and therefore a few of the following pages will be devoted to the explanation of some valuable experiments, all of which may be tried by the teacher in private, while many of them can be shown the pupils with great advantage.
In this system the Maxwell color disks are the means for color combinations and the basis for measurements, and therefore for a color nomenclature. For this reason the present chapter treats largely of the proper use of the wheel and incidentally the theory of red, yellow and blue primaries with combinations to produce secondaries and tertiaries. No teacher using the material connected with this color scheme can hope to meet with success without a knowledge of the principles on which it is based, and in this subject as in all others, it is essential that the teacher shall know much more of it than he or she is ever required to teach.
Primary School Color WheelFig. 3.
For most convenient use the machine should be clamped to the front of a table and near one end, so that the speaker using it can stand at the end of the table and operate it with theright hand. Fig. 2 represents the Normal School Color Wheel showing the face of the disks as seen by the audience. Facility in the operation of the Color Wheel is rapidly acquired by practice and the exact position is easily determined by the operator after a few trials.
Fig. 3 shows the Primary School Color Wheel, which has only two sizes of disks, while the largest machine has four sizes and is much finer in construction. The smaller machine does not require clamping to a table, but may be steadied by the left hand while being operated by the right hand.
Fig. 4.Color Top
Many of the experiments of the color wheel can be produced with a small toy called a Color Top, which is shown in Fig. 4. It is composed of a thick cardboard disk forming the body of in the operation of the Color Wheel the top and a central wooden spindle on which the disk closely fits. A number of colored paper disks are provided with this top so that very many of the experiments performed before a class can be repeated individually by the pupils and in this way the facts which may have been demonstrated to the class with the color wheel can be fixed in the minds of the pupils by their own experiments with the top. Also as a home toy in the hands of the pupils it can be of value, not only to the children, but to the parents as well.
Fig. 5 shows the method of joining two Maxwell disks and Fig. 6 their appearance when properly joined to be placed on the rotating spindle of the color wheel. In joining two or more disks for use on a color wheel or top, care should be taken toplace them in such relation to each other that when rotated the radial edges exposed on the face toward the audience will not "catch the wind." With small disks on the color wheel this is not important, and if there is no whole graduated disk on the arbor behind the slitted disks there is no advantage, but in using the larger disks it is well to put the graduated disk behind the others for this purpose, as at best it is quite laborious to keep up speed when using several of the large disks, even with the best possible conditions. With the thin paper disks of the color in the operation of the Color Wheel top this is an important matter. It will be noticed that the method of joining the disks for use on the Color Top is the reverse of that to be observed with the disks of the Color Wheel as shown in Fig. 5.
Fig. 7 shows the same two color disks placed in front of a large white disk having its edge graduated to one hundred parts, so that the relative proportions of two or more colors to be combined can be determined accurately.
As the smaller disks offer so much less resistance in rotation than the larger ones they are most desirable in private experiments or before a small class, and the largest disks of the Normal School Wheel are necessary only when more than three expressions of color are required to be shown at the same time. In making experiments before an audience those persons in front should if possible be at least ten feet from the color wheel.From ten to forty feet there seems to be but little difference in the color perception, but for best tests fifteen to twenty feet is the most desirable position.
For private practice with the color wheel a small mirror may be placed five or six feet in front of the wheel in such position as to furnish an image of the disks to the person operating the machine. Owing to a slight loss of light by reflection the closest criticism may not be possible when working with a mirror in this way, but if a plate mirror is used the results are very good and a bevel plate mirror about 7 x 9 inches without frame, can usually be procured at small cost; this method is much more satisfactory for personal experimenting than an assistant to turn the wheel.
These disks have heretofore been used as a curious piece of philosophical apparatus rather than because they have been supposed to have any practical value in color training, but in establishing a color nomenclature based on six spectrum colors the disks at once assume a great value and are indispensable in a system of color instruction founded on the science of color and on the psychological perception of colors.
Let us suppose that the two disks shown in Fig. 7 are yellow and green, 80 parts yellow and 20 parts green; then by rotation we shall have a green yellow indicated by the symbol Y. 80, G. 20. No argument is necessary to prove that when an exact expression of color effect is required this is better than the simple statement that it is a greenish yellow.
For practice it is profitable to commence with the red and orange disks combined on the spindle, with a smaller red disk in front of them, the smallest being preferable. Begin by introducing say five per cent of orange and notice that a change from the standard red at the center is visible. Gradually increase the orange until it seems difficult to say whether the resulting color is more like red or orange, and then exchange the small red disk for an orange disk of the same size, and continueadding orange in the larger disks until the difference cannot be detected between the small disk and the larger combined disks.
The standards may be combined in pairs, as has been indicated with the red and orange, to produce all the intermediate hues throughout the spectrum, but it must be remembered that these combinations are to be made by joining in pairs, colors adjacent in the spectrum, red and orange, orange and yellow, yellow and green, green and blue, blue and violet. We then shall have representations of all the spectrum colors, but there are still the colors between violet and red, known in nature and art as purples, which must be produced by uniting the red and violet disks, thus completing a circuit of colors containing all the pure colors in nature.
In nature all colors are modified by light and shade, strong light producing tints and shadows more or less deep forming shades.
These effects are imitated on the color wheel by the use of a white disk combined with a disk of a standard color for tints and a black disk for shades, and can be tested in the same order as indicated for the hues, by combining each standard disk with a white or a black disk in varying proportions. It will be noticed early in disk experiments that a very small amount of white produces a decided effect in the tone of a color while a comparatively large amount of black is necessary to produce a marked change. As this is exactly the reverse of the effects of white and black pigments it is always a subject of remark. In pigments these effects are imitated by the mixture of white with a color to produce tints, and black for shades, or more generally instead of black some dark natural pigment approaching the hue of the color, may be preferred because a black pigment will too often impart an unexpected and undesirable hue to the color. As for example, in making shades of red some natural brown pigment is better than black, and so various dark browns and grays are used for different colors.Even with the disks it is impossible to imitate purest tints of all the standard colors, because in some of the colors, as peculiarly in red and blue, the rotation of the white disk seems to develop a slightly violet gray, for which effect there has as yet been no scientific explanation. This gray dulls the purity of the tint as compared with that which is found in the color under a bright illumination, but on the whole both tints and shades as well as the hues can be better illustrated with the disks than in any other way, and in addition, the advantage is secured of being able to measure and record the tone by the graduated disk in the same way as the hues are measured and recorded. A further advantage is secured in the use of disks in color instruction because with pigments, the only other method by which colors can be combined, much time must be lost not only in the mixing and applying of the colors but in the delay necessary to allow them to dry before the true results can be seen.
Folding ScreenFig. 8.
The shades of yellow as shown on the wheel will not be generally accepted without criticism, but careful comparison with yellow paper in shadow will prove the substantial truth of the disk results. This experiment may be tried as follows: Join two cards with a hinge of paper or cloth to form a folding screen like the covers of a book as in Fig. 8. On the surface A, paste a piece of standard yellow paper and on B, a piece of yellow shade No. 1. Hold these two surfaces toward the class in such a position that the strong light will fall on B, which is the yellow shade, and thus bring the face A, which is a standard yellow, in a position to be shaded from the light. By varying the angle of the covers with each other and turning them as a whole from side to side, a position will be secured in which the two faces will seem so nearly alike as to convince the class that this color which they may havethought to be green, is not green, but a color peculiar to itself, a shade of yellow; because the darker paper when in full light appears substantially the same as the standard yellow in the shade or shadow.
In our experiments thus far with the wheel we have combined the standards in pairs to produce the colors of the spectrum between the standards, which for convenience may be called intermediate spectrum hues, and also have combined a white disk with each of the standards to produce tints of the standards and a black disk to make shades.
By combining a white disk with an orange and a yellow disk, for example, forming a trio of disks, a variety of tints of orange yellow and yellow orange may be made. Also by the use of the black disk instead of the white a series of shades of the intermediate hues may be produced, and thus a great variety of tints and shades of many spectrum colors shown.
Now if the white and black disks are combined with each other the result will be a shade of white, i.e., a white in shadow, which is an absolutely neutral gray. As the experiments progress it will be seen that this neutral gray is a very important feature in the study of color, and therefore it may be well at this point to make sure that the disk combinations give the true gray of a white in shadow by a test similar to the one used for the shade of yellow, thus disarming criticism. Such a test may conveniently be made by covering the reverse sides of the folding covers with white on one cover and "neutral gray paper No. 1" on the other. As the neutral gray papers are made in imitation of combinations of black and white disks this experiment is as convincing as the one regarding the yellow shade. This is but one of many examples of the value of disk combinations in the classification and analysis of colors.
In an elaborate chart of colors highly recommended for primary color instruction a dozen years ago no correct understanding of the classification of colors is shown, the tints and shades being indicated by a very decided change of hue rather than aconsistent modification of tone. For example, in the red scale the standard or normal red is vermilion, i.e., an orange red; shade No. 1 is simply a red less orange in hue than the standard, and shade No. 2 a shade of the standard red advocated in this system; while tint No. 1 is a broken yellow orange and tint No. 2 is much more yellow and more broken than No. 1.
Similar inconsistencies occur in all the other scales, showing that the author had no correct knowledge of the analysis of colors, and yet this was the best and practically the only aid offered for instruction in color at that time.
Neither were there any true standards for neutral grays and the term "neutral" was used in such an indefinite way as to rob it of all actual value, until by the aid of disk combinations it came to be confined to white in shadow as closely imitated by the combinations of white and black disks.
Tints and Shades
Fig. 9.
With colored papers made in imitation of the six standards and two tints and two shades of each, six scales of colors may be produced by arranging the five different tones of each color in a row, as in Fig. 9, which represents the orange scale with tints at the left and shades at the right. If, in addition to these six scales, we have two scales between each two of the standards, we may have between the orange scale and the yellow scale a yellow orange scale and an orange yellow scale, and if we thus introduce the intermediate scales between each of the other two standards, and include the red violet and violet red, we shall have eighteen scales of five tones each.
The eighteen scales as above named may be arranged asshown in Fig. 10 to form a chart of pure spectrum scales which is very valuable for study and comparison and especially so in the study of the theory of harmonies. All these tones are called pure tones and this chart is therefore called a chart of Pure Spectrum Scales.
The idea that soft, dull, broken colors produce best harmonies when used in combination may or may not be a universally accepted truth, but there is a general belief that it is much easier to make acceptable combinations with broken colors than with pure spectrum colors and their tints and shades, and therefore the temptation has been strong to select a general assortment of colors which easily harmonize because of the pleasing effect, instead of having regard solely to the educational value of colors.
Truth in education requires that when colors are classified as spectrum colors they shall all be the nearest approach possible to the true spectrum colors, and in the spectrum there are no broken or impure colors. Therefore, whenever the spectrum is set up as nature's standard or chart of colors and an imitation is made in pigments or papers, great care should be used to secure the most accurate imitation possible, but in the past this has not been the case, because of the prevailing idea that the colors must all be possible combinations of three primaries, and hence the orange, green and violet have often been very broken colors. While pure colors and their tints and shades may be advantageously combined with various tones of broken colors in one composition for artistic effect, they should be definitely divided when classified for educational purposes, and their differences clearly explained to students.
In a scale of tones in any color the several papers will harmonize more easily if the tints and shades are not too far removed from the standard, but it is thought by many good judges that the educational advantage in learning to see the relationship of color in the more extreme tones is of greater importance in the elementary grades than the facility for makingmost pleasing combinations. Consequently in the Bradley colored papers the tints are very light and the shades quite dark.
If, instead of adding either a white disk or a black disk to a spectrum color, by which we make pure tints and shades, we add both white and black, a line of gray colors or so-called broken colors is formed. This is most beautifully shown with the disks, and in this way a line oftrue broken colorsis secured, because in each case a true neutral gray has been added to the color, which cannot be insured in the mixture of gray pigments. As an example, this may be shown with the three smaller sizes of the orange disks. With the medium size of these three make the combination Orange, 35; White, 10; Black 55. With the larger size disks make the proportions Orange, 16; White, 5; Black, 79, and with the smallest size Orange, 43; White, 33; Black, 24. Place these three sets of disks on the spindle at one time and you have the three tones of a broken orange scale.
With similar combinations applied to the six standards and one intermediate hue between each two, there will be material for a chart of Broken Spectrum Scales, as shown in Fig. 11, including twelve scales of three tones each. These are the most beautiful colors in art or nature when combined harmoniously. Because of the loss of color in broken colors it is not advisable to attempt so many different hues or so many tones of each hue as in pure colors, for slight differences in either hues or tones are not as readily perceived.
In these two charts of color scales two distinct classes of colors are represented, namely, pure colors and broken colors. The pure colors consist of the purest possible pigmentary imitations of spectrum colors, with their tints and shades, and the broken colors are these pure colors dulled by the admixture of neutral grays in various tones. This distinction is readily recognized under proper training, so that if a broken color is introduced into a combination of colors from a pure scale it will be readily detected, which always occurs when the attempt is made to produce a series of spectrum scales by the combination of the three primary colors red, yellow and blue. By this method, if logically carried out, the orange, green and violet are dark broken colors, and hence to a less extent the intermediate colors also, because each of these is a mixture of a pure color with a broken color. The usual result, however, is that the orange made from the red and yellow seem so out of place in the warm end of the spectrum that it is modified and made much nearer the pure color, usually, however, too yellow, while the greens and violets, which are deep and rich broken colors, may seem more harmonious, but are so dark as to be out of place among spectrum colors.
If light broken colors are properly combined a beautiful imitation rainbow is produced, which is more harmonious than the spectrum made from full colors. A series of such colors combined in spectrum order produce a more pleasing effect when separated by a small space of white, black, gray, silver or gold. The reason for this may be found in the discussion of simultaneous contrasts.
In nature nearly all colors are broken. First, there is always more or less vapor together with other impurities in the air, so that even in a clear day objects a few hundred feet from us are seen through a gray veil, as it were, and in a misty or hazy day this is very evident. In the case of somewhat distant foliage the general color effect is produced by the light reflected from the aggregation of leaves, some of which may be in bright sunlight and others in shadow, with a mixture of brown twigs. All these tints and shades of green and brown are mingled in one general effect in the eye. Also, owing to the rounded forms and irregular illumination of objects, we see very little full or local color in nature.
Therefore the study of broken colors becomes the most fascinating branch of this whole subject, and it also has an added interest because nearly all the colors found in tapestries, hangings, carpets, ladies' dress goods, etc., come under this head. In fact it would be hazardous for an artisan or an artist touse any full spectrum color in his work, except in threads, lines or dots. A considerable quantity of pure standard green, for instance, would mar the effect of any landscape.
It is a very interesting diversion to analyze samples of the dress goods sold each season under the most wonderful names. For example:—
"Ecru," a color sold a few seasons ago, is a broken orange yellow with a nomenclature O. 12, Y. 15, W. 17, N. 56, while this year "Leghorn" and "Furet" are two of the "new" colors, the former having a nomenclature of O. 16, Y. 54, W. 19, N. 11, and the latter O. 18, Y. 18, W. 8, N. 56, all of which are very beautiful broken orange yellows.
"Ashes of Roses" of past years is a broken violet red which can be analyzed as follows: R. 8-1/2, V. 2-1/4, W. 15-1/4, N. 74.
"Anemon" of this season is R. 28, V. 7, W. 5, N. 60, which is another broken violet red.
"Old Rose" is a broken red: R. 65-1/2, W. 24-1/2, N. 10.
"Empire" of past seasons is G. 18-1/2, B. 11, W. 16-1/2, N. 54, while "Neptune" of this season is G. 13-1/2, B. 2-1/2, W. 11, N. 73, both being broken blue greens.
"Topia," a beautiful brown, is O. 10, N. 90, a pure shade of orange, while "Bolide" is a lighter yellow orange with a nomenclature of O. 18-1/2, Y. 2-1/2, W. 1-1/2, N. 77-1/2.
We might analyze "Elephant's Breath," "Baby Blue," "Nile Green," "Crushed Strawberry" and others common in the market, but while the names will no doubt occur each season the colors will change with the fickle demands of the goddess of fashion and the interests of the manufacturers and dealers. In writing any color nomenclature the letters should be used in the following order: R.-O.-Y.-G.-B.-V.-W.-N., thus always listing the standard colors before the white or black. For example, never place Y. before O. or R., and never use N. before W. If this order is strictly adhered to the habit is soon acquired and a valuable point gained.
It has been shown that combined white and black disks formneutral gray, which is a white in shadow or under a low degree of illumination. If to such a gray a very small amount of color is added, as orange for example, by the introduction of an orange disk, this neutral gray becomes an orange gray, but unless the amount is considerable it can not be detected as an orange, but the gray may be termed a warm gray, denoting that it is affected by some one of the colors near the red end of the spectrum. If blue instead of orange is added to the neutral gray, a cool gray is produced. When green is added to a gray the result can not fairly be called either warm or cool, and hence we have termed it a green gray. According to this plan we have four classes of grays, Neutral, Warm, Cool and Green grays. As there may be many tones of each, and many intermediate combinations from red to green, or green to blue, the number of grays in nature is infinite, but these four classes with two tones of each in the papers form what may be called standards or stations from which to think of the grays, the same as the six standards in the spectrum constitute points from which to think of pure colors.
A careful consideration of the foregoing pages, accompanied with a color wheel or even a color top, can hardly fail to give a student who will make the experiments a clear idea of the use of the disks in the system of color education in which they form such an important feature, and therefore the old theory of three primaries, red, yellow and blue, and all that it leads to can be very intelligently considered and tested by them in the experiments which follow.
This old theory briefly restated is as follows: It is said "there are in nature three primary colors, red, yellow and blue; and by the mixture of these primary colors in pairs, orange, green and violet may be made." In fact leading educators have said that "in the solar spectrum, which is nature's chart of colors, the principal colors are red, orange, yellow, green, blue and violet;of thesered, yellow and blue are primaries from which may be made the secondaries, orange, green and violet."All such statements as heretofore made in any popular treatment of the subject are understood to mean that in a pigmentary imitation of a spectrum the secondaries as enumerated may be produced by the mixtures of the primary pigments, because pigmentary mixtures are the only combinations generally recognized.
This theory has also included the statement that the primaries are complementary to the secondaries in pairs, and that the combination of the secondaries in pairs may produce a distinct class of colors called tertiaries.
It will be the aim of the following pages to demonstrate that in all this there is neither scientific or æsthetic truth nor educational value.
Experiments in mixing the three pigments, red, yellow and blue, to produce the secondaries, orange, green and violet, have been very carefully made with interesting and instructive results. All such experiments are valueless unless made with one accepted set of primaries for the three combinations, because it is self-evident that if we select a vermilion red which is very decidedly an orange red, and choose for our yellow one of the orange yellows, the mixture will more nearly approach a true orange than if a standard red and standard yellow are used. Also in making a violet, if we mix a carmine, which is a violet red, with a decidedly violet blue, of which there are many, the result will be a better violet than the combination of the standard red and blue. So also in the mixing of blue and yellow to make green, a greenish yellow and a greenish blue will necessarily produce better results than the standards. Therefore, to test the matter fairly, the same pigments which are used to coat the standard red, yellow and blue papers have been combined so as to produce the best possible orange, green and violet, and these results when analyzed on the color wheel are as follows:—
The orange made by mixing standard red and yellow pigmentsin the best proportions is equal to O. 46, W. 2, N. 52. The violet is equal to V. 20, W. 1, N. 79, and the nearest approach to a standard green is shown by disk analysis to be G. 37, W. 7, N. 56, which is better than the violet and nearly as good as the orange.
These experiments show that heretofore when a line of standards of six colors has been prepared from three primaries, red, yellow and blue, even though the purest possible colors may have been selected for the primaries, the secondaries have not been in the same class of colors, and that all of them are very dark broken colors. Therefore, in using educational colored papers based on such a scheme, the pupil has received no correct impressions of the relative values of the several colors involved in pure spectrum scales, but has been shown at the outset a mixture of pure and broken colorsas standards.
This is not a matter of opinion regarding best harmonies, because it is easy to demonstrate that less skill is required to combine broken colors harmoniously than pure colors, but it is a choice between truth and error in the early education of color perception.
While it may be impossible for the reader to secure pigments exactly like the standards, red, yellow and blue, used in the above experiments, and therefore the statement here made can not be accurately verified, any one having a color wheel or even a color top may test the same combinations by use of disks. If it is true, as claimed, that a good standard orange can be made by mixing red and yellow, then it should follow that when a red and yellow disk are combined and a smaller orange disk placed in front of them, that it ought to be possible to so adjust the proportion of red to yellow that by rotation the outer ring of color will match the central orange disk.
A trial of this experiment will show that while the color resulting from the best possible combination of red and yellow is a kind of orange, it is not even an approximation to the standardorange, but is a shade of orange which may be matched by combining the smaller orange disk with a black disk in the proportion of O. 45, N. 55, the larger disks being R. 89, Y. 11.
In combining red and blue disks to make a violet the result is more satisfactory, while if we attempt to produce a green by combining the yellow and blue disks the result will be surprising, but probably not convincing, because the statement that yellow and blue make green has been so persistently reiterated as a fundamental axiom that people who have given the subject but little attention will feel that to doubt it is rank heresy. In a text book treating of color is found the following passage: "Green substances reflect the green, i.e., the blue and yellow rays of the sunlight and absorb all the others." It is a fact, however, that in the mixture of blue and yellow light there is little or no trace of green, as a single experiment with a color top or color wheel will readily demonstrate.
In response to this convincing experiment a colorist of the "old school," (and there are few others) will doubtless say, "Such an assertion seems to be true when applied to these rotating disks, but we see no practical value in experiments of this kind, because in the use of color we must depend on pigmentary combinations, and in pigments yellow and blue do make green." The author of a statement of this kind is always honest in making it, and yet it is absolutely untrue, because as has already been shown, the green resulting from the mixture of yellow and blue can not be placed even approximately in the same class as the yellow and blue of which it is composed.
In accepting the disk combinations of standard pigmentary colors we are assuming a system of color investigation based on the combination of colored light rather than the mixture of pigments, and to an artist who has given the subject little thought this seems quite radical, not to say startling. But, logically, why is it not the most natural as well as the correct basis for this work?
Art in color must be based on the imitation of natural coloreffects. We must first learn to see color correctly and to know what we see, and after that it is a very simple matter to learn which pigments to combine for producing any desired result which is already clearly defined in the mind. In fact the best selection of pigments must often be based on their chemical and mechanical qualities as much as on their peculiar hues.
All color impressions of material substances are produced by colored light reflected from a material surface to the retina of the eye, through which by some unknown means it is conveyed to the brain. When the white sunlight falls on a material substance a portion of the rays are absorbed and others are reflected to the eye, thereby conveying impressions of color. If on a surface of yellow material we throw a strong orange light through a colored glass, some of the orange rays from the glass will mingle with the yellow rays and the two are reflected to the eye, thereby producing an orange yellow or yellow orange effect where before it was yellow. So in a summer evening landscape when there is a so-called red sunset, everything is illuminated by an orange light and each color in the landscape is affected by the orange rays which mingle with the rays of the local color and are reflected to the eyes of the observer, producing the effect of local colors mixed with orange.
In a room where the windows open on to a green lawn with many trees in close proximity to the house, nearly all the light is reflected from green surfaces, and hence is green light. In such a case a correct painting of objects in that room would have a general green effect.
The afternoon light in a room on the west side of a city street may be nearly all red light, reflected from an opposite red brick wall, and such a room would be ill-adapted to showing fine dress goods, because the hues of the more delicate colors would be entirely changed, and hence would give a false impression as to the relations of the several colors in combination as seen in white or clear daylight. If a piece of light blue silk is illuminated by sunlight passing through a bit of yellowglass, no trace of green effect will be produced, but a gray either slightly yellow or blue, according to the relative strength of the colors in the glass and the silk. This same effect would be secured if the yellow light of the setting sun illuminated the same material, but under such conditions everything else would be similarly affected so that the effect would not be so apparent.
The idea that all color is derived from the three primaries, red, yellow and blue, is so generally believed that our best writers among artists, colorists and educators have repeated it for many years. George Barnard, an English artist, in a very valuable book on water color painting, speaking of the colors of the spectrum which may be re-combined to form white light, says that if the yellow and blue rays are combined they produce green.
Chevreul also states in his invaluable book on color contrasts that yellow and blue threads woven into a texture, side by side, produce green. This statement is the more remarkable because the writer was a very careful investigator and is but another evidence of the strong hold which the Newton and Brewster theory has had on the public mind for so many years.
The story is told of an artist who wished to introduce into a composition of still life a blue vase with a bit of yellow lace thrown over a portion of it, and having been educated to believe that yellow and blue made green, gave a green effect to the portion of the vase covered by the lace. Had he known that blue and yellow light combined make gray instead of green he would have avoided the error.
The fact that gray is the product of blue and yellow light is sometimes taken advantage of in forming backgrounds in lithographic printing, in which a stippling of alternate dots of yellow and blue, very close together but not overlapping, is used to produce a beautifully transparent gray much more pleasing than any one tint of gray. This result is due to the blending of the two colors in the eye with the same effect as the colors of two rotating disks are mingled. The fact that there is a differencebetween the color effects produced by mixing two pigments and the mixing of the light reflected from similar colored surfaces is a very strong argument for a system of color instruction based on disk combinations, rather than on pigmentary mixtures.
In order to obtain the most truthful effects of color in nature the artist should have sufficient knowledge of the principles which govern the combination of colors by reflected light, so that his reason may aid his eyes.
A little experimenting with the rotating disks and with pigments will convince any one that the disk combinations form the only possible basis at present known for logical color instruction.
Having shown that the three colors, red, yellow and blue, can not be combined to make an orange, a green or a violet of a corresponding degree of purity, we will consider the other claim which is set up by the advocates of the Brewster theory, namely, that the secondaries are complementary to the primaries in pairs, the green to the red, the violet to the yellow and the orange to the blue.
As all color is contained in white light, if we take from white light any given color, the color remaining is the complementary. If a small disk of standard red paper is placed on a white wall and the eyes fixed intently on it for a few seconds, and then the eyes slightly moved back and forth, a ring of a bluish green tint will be seen surrounding the red paper, or if the eyes are fixed intently on the disk for a short time and the paper suddenly removed, a disk of the same blue green tint will be seen in place of the red disk. This is called the accidental color and is supposed to be identical with the complementary color, although the image is too faint to give any very exact effect, but it is sufficient to furnish a clue to the complementary, and we may infer that a color between green and blue is that which is required.
Now if we can determine in what proportions red, blue and green must be united to produce white light we may solve the problem. This is not possible in the use of any pigmentary colors, because of the impurity of all pigments as compared with spectrum colors. Although the mixture of colored light reflected from the disks, which are made of pigmentary colors, gives much purer color than the actual mechanical mixture of the two pigments, still, because it is a reflection of pigmentary colors, it is far lower in tone than the corresponding mixture of spectrum colors. Therefore it can not be a pure white, but may be white in shade or a neutral gray, which, as already shown, can be produced by the combination of a white and a black disk.
Therefore if red, blue and green disks of medium size are joined on the wheel and in front of them small white and black disks are combined, we have a means for solving this problem. If these various disks can be so adjusted that when rotated the effect of the three colored disks is a neutral gray, (or white under a low degree of illumination) exactly matching a gray that may be obtained by adjusting the small black and white disks, then one step in the solution is taken, as shown in Fig. 12.
With such an arrangement a very close match is produced, when the combined disks show the proportions to be R. 41-1/2, B. 22-1/2, G. 36 for the larger disks, and for the small disks W. 15, and N. 85. Now if blue and green are combined in the same proportions, as indicated above and in quantities sufficientwhen added together to fill the entire circle of 100 parts, blue will contain 38.3 parts and green, 61.7 parts, as shown in Fig. 13, and the disks when rotated will give the color which is the complementary of red: namely, a blue green.
In the same way the complementary of each of the other standard colors, and in fact of any color, may be obtained.
The complementary of orange is another color between the green and blue, but more largely blue. The complementary of green is a violet red, and of violet a color between yellow and green, while yellow and blue are very nearly complementary to each other.
These figures furnish the results in a very well-lighted room, with a perfectly white interior. It is a well-established fact that this experiment is somewhat affected by the degrees of illumination, and also that colored light from the walls and ceiling of a room must of necessity have its effect, but all these matters are so insignificant as to be of no material consequence in the æsthetic study of the subject, and they can be very nearly eliminated when necessary by a careful selection of conditions. Whenever accurate experiments in pigmentary color comparisons are to be made, either by the use of rotating disks or otherwise, it is desirable to have a very well-lighted room, with a northern exposure and to select a morning or noonday light from a slightly overcast sky. These conditions obviate the unpleasant effect of direct sunlight in the room and also the very slightly blue effect of the clear sky. These precautions are unnecessary in experiments relating to the ordinary æsthetic consideration of color combinations, but even in such work it is important to exclude all light reflected from neighboring trees or colored buildings. Also the interior of the room should be as free from color as possible; a clean white surface is especially desirable.
A Chart of Complementary Colors, shown in Fig. 14, has been found very valuable in fixing in the minds of teacher and pupils the complementaries of the six standards. In this chart,which is about eighteen inches in diameter, the circles at the ends of the six diameters are colored papers selected from the Bradley coated papers, as approximating the true complementaries. In the majority of cases they are not far from correct, but are least satisfactory in the blue and yellow. Theoretically the complementary of the ideal standard blue is a slightly orange yellow, and of the standard yellow a slightly violet blue. But there is as yet no blue pigment in the market suitable for commercial use which is free from a slightly violet effect. Therefore the standard blue paper is practically as good a complementary for the standard yellow as the violet blue paper. But notwithstanding these slight imperfections which are at present unavoidable, the chart is a valuable aid in fixing in the mind the positions of the complementary pairs in the spectrum circuit.