The Project Gutenberg eBook ofEncyclopaedia Britannica, 11th Edition, "Fleury, Claude" to "Foraker"

The Project Gutenberg eBook ofEncyclopaedia Britannica, 11th Edition, "Fleury, Claude" to "Foraker"This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online atwww.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.Title: Encyclopaedia Britannica, 11th Edition, "Fleury, Claude" to "Foraker"Author: VariousRelease date: April 1, 2011 [eBook #35747]Most recently updated: January 7, 2021Language: EnglishCredits: Produced by Marius Masi, Don Kretz and the OnlineDistributed Proofreading Team at https://www.pgdp.net*** START OF THE PROJECT GUTENBERG EBOOK ENCYCLOPAEDIA BRITANNICA, 11TH EDITION, "FLEURY, CLAUDE" TO "FORAKER" ***

This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online atwww.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.

Title: Encyclopaedia Britannica, 11th Edition, "Fleury, Claude" to "Foraker"Author: VariousRelease date: April 1, 2011 [eBook #35747]Most recently updated: January 7, 2021Language: EnglishCredits: Produced by Marius Masi, Don Kretz and the OnlineDistributed Proofreading Team at https://www.pgdp.net

Title: Encyclopaedia Britannica, 11th Edition, "Fleury, Claude" to "Foraker"

Author: Various

Author: Various

Release date: April 1, 2011 [eBook #35747]Most recently updated: January 7, 2021

Language: English

Credits: Produced by Marius Masi, Don Kretz and the OnlineDistributed Proofreading Team at https://www.pgdp.net

*** START OF THE PROJECT GUTENBERG EBOOK ENCYCLOPAEDIA BRITANNICA, 11TH EDITION, "FLEURY, CLAUDE" TO "FORAKER" ***

Articles in This Slice

FLEURY, CLAUDE(1640-1723), French ecclesiastical historian, was born at Paris on the 6th of December 1640. Destined for the bar, he was educated at the aristocratic college of Clermont (now that of Louis-le-Grand). In 1658 he was nominated an advocate to the parlement of Paris, and for nine years followed the legal profession. But he had long been of a religious disposition, and in 1667 turned from law to theology. He had been some time in orders when Louis XIV., in 1672, selected him as tutor of the princes of Conti, with such success that the king next entrusted to him the education of the count of Vermandois, one of his natural sons, on whose death in 1683 Fleury received for his services the Cistercian abbey of Loc-Dieu, in the diocese of Rhodez. In 1689 he was appointed sub-preceptor of the dukes of Burgundy, of Anjou, and of Berry, and thus became intimately associated with Fénelon, their chief tutor. In 1696 he was elected to fill the place of La Bruyère in the French Academy; and on the completion of the education of the young princes the king bestowed upon him the rich priory of Argenteuil, in the diocese of Paris (1706). On assuming this benefice he resigned, with rare disinterestedness, that of the abbey of Loc-Dieu. About this time he began his great work, the first of the kind in France, and one for which he had been collecting materials for thirty years—theHistoire ecclésiastique. Fleury’s evident intention was to write a history of the church for all classes of society; but at the time in which his great work appeared it was less religion than theology that absorbed the attention of the clergy and the educated public; and his work accordingly appealed to the student rather than to the popular reader, dwelling as it does very particularly on questions of doctrine, of discipline, of supremacy, and of rivalry between the priesthood and the imperial power. Nevertheless it had a great success. The first edition, printed at Paris in 20 volumes 4to, 1691, was followed by many others, among which may be mentioned that of Brussels, in 32 vols. 8vo, 1692, and that of Nismes, in 25 vols. 8vo, 1778 to 1780. The work of Fleury only comes down to the year 1414. It was continued by J. Claude Fabre and Goujet down to 1595, in 16 vols. 4to. In consulting the work of Fleury and its supplement, the general table of contents, published by Rondel, Paris, 1758, 1 vol. 4to, will be found very useful. Translations have been made of the entire work into Latin, German and Italian. The Latin translation, published at Augsburg, 1758-1759, 85 vols. 8vo, carries the work down to 1684. Fleury, who had been appointed confessor to the young king Louis XV. in 1716, because, as the duke of Orleans said, he was neither Jansenist nor Molinist, nor Ultramontanist, but Catholic, died on the 14th of July 1723. His great learning was equalled by the modest simplicity of his life and the uprightness of his conduct.

Fleury left many works besides hisHistoire ecclésiastique. The following deserve special mention:—Histoire du droit françois(1674, 12mo);Mœurs des Israélites(1681, 12mo);Mœurs des Chrétiens(1682, 12mo);Traité du choix et de la méthode des études(1686, 2 vols. 12mo);Les Devoirs des maîtres et des domestiques(1688, 12mo). A number of the smaller works were published in one volume at Paris in 1807. The Roman Congregation of the Index condemned hisCatéchisme historique(1679) and theInstitution du droit ecclésiastique(1687).See C. Ernst Simonetti,Der Character eines Geschichtsschreibers in dem Leben und aus den Schriften des Abts C. Fleury(Göttingen, 1746, 4to); C.F.P. Jaeger,Notice sur C. Fleury, considéré comme historien de l’église(Strassburg, 1847, 8vo); Reichlin-Meldegg,Geschichte des Christentums, i.

Fleury left many works besides hisHistoire ecclésiastique. The following deserve special mention:—Histoire du droit françois(1674, 12mo);Mœurs des Israélites(1681, 12mo);Mœurs des Chrétiens(1682, 12mo);Traité du choix et de la méthode des études(1686, 2 vols. 12mo);Les Devoirs des maîtres et des domestiques(1688, 12mo). A number of the smaller works were published in one volume at Paris in 1807. The Roman Congregation of the Index condemned hisCatéchisme historique(1679) and theInstitution du droit ecclésiastique(1687).

See C. Ernst Simonetti,Der Character eines Geschichtsschreibers in dem Leben und aus den Schriften des Abts C. Fleury(Göttingen, 1746, 4to); C.F.P. Jaeger,Notice sur C. Fleury, considéré comme historien de l’église(Strassburg, 1847, 8vo); Reichlin-Meldegg,Geschichte des Christentums, i.

FLIEDNER, THEODOR(1800-1864), German Protestant divine, was born on the 21st of January 1800 at Epstein (near Wiesbaden), the small village in which his father was pastor. He studied theology at the universities of Giessen and Göttingen, and at the theological seminary of Herborn, and at the age of twenty he passed his final examination. After a year spent in teaching and preaching, in 1821 he accepted a call from the Protestant church at Kaiserswerth, a little town on the Rhine, a few miles below Düsseldorf. To help his people and to provide an endowment for his church, he undertook journeys in 1822 through part of Germany, and then in 1823 to Holland and England. He met with considerable success, and had opportunities of observing what was being done towards prison reform; in England he made the acquaintance of the philanthropist Elizabeth Fry. The German prisons were then in a very bad state. The prisoners were huddled together in dirty rooms, badly fed, and left in complete idleness. No one dreamed of instructing them, or of collecting statistics to form the basis of useful legislation on the subject. Fliedner, at first singly, undertook the work. He applied for permission to be imprisoned for some time, in order that he might look at prison life from the inside. This petition was refused, but he was allowed to hold fortnightly services in the Düsseldorf prison, and to visit the inmates individually. Those interested in the subject banded themselves together, and on the 18th of June 1826 the first Prison Society of Germany (Rheinisch-Westfälischer Gefängnisverein) was founded. In 1833 Fliedner opened in his own parsonage garden at Kaiserswerth a refuge for discharged female convicts. His circle of practical philanthropy rapidly increased. The state of the sick poor had for some time excited his interest, and it seemed to him that hospitals might be best served by an organized body of specially trained women. Accordingly in 1836 he began the first deaconess house, and the hospital at Kaiserswerth. By their ordination vows the deaconesses devoted themselves to the care of the poor, the sick and the young; but their engagements were not final—they might leave their work and return to ordinary life if they chose. In addition to these institutions Fliedner founded in 1835 an infant school, then a normal school for infant school mistresses (1836), an orphanage for orphan girls of the middle class (1842), and an asylum for female lunatics (1847). Moreover, he assisted at the foundation and in the management of similar institutions, not only in Germany, but in various parts of Europe.

In 1849 he resigned his pastoral charge, and from 1849 to 1851 he travelled over a large part of Europe, America and the East—the object of his journeys being to found “mother houses,” which were to be not merely training schools for deaconesses, but also centres whence other training establishments might arise. He established a deaconess house in Jerusalem, and after his return assisted by counsel and money in the erection of establishments at Constantinople, Smyrna, Alexandria and Bucharest. Among his later efforts may be mentioned the Christian house of refuge for female servants in Berlin (connected with which other institutions soon arose) and the “house of evening rest” for retired deaconesses at Kaiserswerth. In 1855 Fliedner received the degree of doctor in theology from the university of Bonn, in recognition rather of his practical activity than of his theological attainments. He died on the 4th of October 1864, leaving behind him over 100 stations attended by 430 deaconesses; and these by 1876 had increased to 150 with an attendance of 600.

Fliedner’s sonFritz Fliedner(1845-1901), after studying in Halle and Tübingen, became in 1870 chaplain to the embassy inMadrid. He followed in his father’s footsteps by founding several philanthropic institutions in Spain. He was also the author of a number of books, amongst which was an autobiography,Aus meinem Leben. Erinnerungen und Erfahrungen(1901).

Theodor Fliedner’s writings are almost entirely of a practical character. He edited a periodical,Der Armen und Kranken Freund,which contained information regarding the various institutions, and also the yearly almanac of the Kaiserswerth institution. Besides purely educational and devotional works, he wroteBuch der Märtyrer(1852);Kurze Geschichte der Entstehung der ersten evang. Liebesanstalten zu Kaiserswerth(1856);Nachricht über das Diakonissen-Werk in der Christ. Kirche(5th ed., 1867);Die evangel. Märtyrer Ungarns und Siebenbürgens; and Beschreibung der Reise nach Jerusalem und Constantinopel. All were published at Kaiserswerth. There is a translation of the German life by C. Winkworth (London, 1867). See also G. Fliedner,Theodor Fliedner, kurzer Abriss seines Lebens und Wirkens(3rd ed., 1892). See also on Fliedner and his workKaiserswerth Deaconesses(London, 1857); Dean John S. Howson’sDeaconesses(London, 1862);The Service of the Poor, by E.C. Stephen (London, 1871); W.F. Stevenson’sPraying and Working(London, 1865).

Theodor Fliedner’s writings are almost entirely of a practical character. He edited a periodical,Der Armen und Kranken Freund,which contained information regarding the various institutions, and also the yearly almanac of the Kaiserswerth institution. Besides purely educational and devotional works, he wroteBuch der Märtyrer(1852);Kurze Geschichte der Entstehung der ersten evang. Liebesanstalten zu Kaiserswerth(1856);Nachricht über das Diakonissen-Werk in der Christ. Kirche(5th ed., 1867);Die evangel. Märtyrer Ungarns und Siebenbürgens; and Beschreibung der Reise nach Jerusalem und Constantinopel. All were published at Kaiserswerth. There is a translation of the German life by C. Winkworth (London, 1867). See also G. Fliedner,Theodor Fliedner, kurzer Abriss seines Lebens und Wirkens(3rd ed., 1892). See also on Fliedner and his workKaiserswerth Deaconesses(London, 1857); Dean John S. Howson’sDeaconesses(London, 1862);The Service of the Poor, by E.C. Stephen (London, 1871); W.F. Stevenson’sPraying and Working(London, 1865).

FLIGHTandFLYING.Of the many scientific problems of modern times, there are few possessing a wider or more enduring interest than that of aerial navigation (see alsoAeronautics). To fly has always been an object of ambition with man; nor will this occasion surprise when we remember the marvellous freedom enjoyed by volant as compared with non-volant animals. The subject of aviation is admittedly one of extreme difficulty. To tread upon the air (and this is what is really meant) is, at first sight, in the highest degree utopian; and yet there are thousands of living creatures which actually accomplish this feat. These creatures, however varied in form and structure, all fly according to one and the same principle; and this is a significant fact, as it tends to show that the air must be attacked in a particular way to ensure flight. It behoves us then at the outset to scrutinize very carefully the general configuration of flying animals, and in particular the size, shape and movements of their flying organs.

Flying animals differ entirely from sailing ships and from balloons, with which they are not unfrequently though erroneously compared; and a flying machine constructed upon proper principles can have nothing in common with either of those creations. The ship floats upon water and the balloon upon air; but the ship differs from the balloon, and the ship and the balloon differ from the flying creature and flying machine. The water and air, moreover, have characteristics of their own. The analogies which connect the water with the air, the ship with the balloon, and the ship and the balloon with the flying creature and flying machine are false analogies. A sailing ship is supported by the water and requires merely to be propelled; a flying creature and a flying machine constructed on the living type require to be both supported and propelled. This arises from the fact that water is much denser than air, and because water supports on its surface substances which fall through air. While water and air are both fluid media, they are to be distinguished from each other in the following particulars. Water is comparatively very heavy, inelastic and incompressible; air, on the other hand, is comparatively very light, elastic and compressible. If water be struck with violence, the recoil obtained is great when compared with the recoil obtained from air similarly treated. In water we get a maximum recoil with a minimum of displacement; in air, on the contrary, we obtain a minimum recoil with a maximum of displacement. Water and air when unconfined yield readily to pressure. They thus formmovable fulcrato bodies acting upon them. In order to meet these peculiarities the travelling organs of aquatic and flying animals (whether they be feet, fins, flippers or wings) are made not of rigid but of elastic materials. The travelling organs, moreover, increase in size in proportion to the tenuity of the fluid to be acted upon. The difference in size of the travelling organs of animals becomes very marked when the land animals are contrasted with the aquatic, and the aquatic with the aerial, as in figs. 1, 2 and 3.

The peculiarities of water and air as supporting media are well illustrated by a reference to swimming, diving and flying birds. A bird when swimming extends its feet simultaneously or alternately in a backward direction, and so obtains a forward recoil. The water supports the bird, and the feet simply propel. In this case the bird is lighter than the water, and the long axis of the body is horizontal (aof fig. 4). When the bird dives, or flies under water, the long axis of the body is inclined obliquely downwards and forwards, and the bird forces itself into and beneath the water by the action of its feet, or wings, or both. In diving or sub-aquatic flight the feet strike upwards and backwards, the wings downwards andbackwards(bof fig. 4). In aerial flying everything is reversed. The long axis of the bird is inclined obliquely upwards and forwards, and the wings strike, not downwards and backwards, but downwards andforwards(cof fig. 4). These changes in the direction of the long axis of the bird in swimming, diving and flying, and in the direction of the stroke of the wings in sub-aquatic and aerial flight, are due to the fact that the bird is heavier than the air and lighter than the water.

The physical properties of water and air explain in a great measure how the sailing ship differs from the balloon, and how the latter differs from the flying creature and flying machine constructed on the natural type. The sailing ship is, as it were, immersed in two oceans, viz. an ocean of water and an ocean of air—the former being greatly heavier and denser than the latter. The ocean of water buoys or floats the ship, and the ocean of air, or part of it in motion, swells the sails which propel the ship. The moving air, which strikes the sails directly, strikes the hull of the vessel indirectly and forces it through the water, which, as explained, is a comparatively dense fluid. When theship is in motion it can be steered either by the sails alone, or by the rudder alone, or by both combined. A balloon differs from a sailing ship in being immersed in only one ocean, viz. the ocean of air. It resembles the ship in floating upon the air, as the ship floats upon the water; in other words, the balloon is lighter than the air, as the ship is lighter than the water. But here all analogy ceases. The ship, in virtue of its being immersed in two fluids having different densities, can be steered and made to tack about in a horizontal plane in any given direction. This in the case of the balloon, immersed in one fluid, is impossible. The balloon in a calm can only rise and fall in a vertical line. Its horizontal movements, which ought to be the more important, are accidental movements due to air currents, and cannot be controlled; the balloon, in short, cannot be guided. One might as well attempt to steer a boat carried along by currents of water in the absence of oars, sails and wind, as to steer a balloon carried along by currents of air. The balloon has no hold upon the air, and this consequently cannot be employed as afulcrumfor regulating its course. The balloon, because of its vast size and from its being lighter than the air, is completely at the mercy of the wind. It forms an integral part, so to speak, of the wind for the time being, and the direction of the wind in every instance determines the horizontal motion of the balloon. The force required to propel a balloon against even a moderate breeze would result in its destruction. The balloon cannot be transferred with any degree of certainty from one point of the earth’s surface to another, and hence the chief danger in its employment. It may, quite as likely as not, carry its occupants out to sea. The balloon is a mere lifting machine and is in no sense to be regarded as a flying machine. It resembles the flying creature only in this, that it is immersed in the ocean of air in which it sustains itself. The mode of suspension is wholly different. The balloon floats because it is lighter than the air; the flying creature floats because it extracts from the air, by the vigorous downward action of its wings, a certain amount of upward recoil. The balloon is passive; the flying creature is active. The balloon is controlled by the wind; the flying creature controls the wind. The balloon in the absence of wind can only rise and fall in a vertical line; the flying creature can fly in a horizontal plane in any given direction. The balloon is inefficient because of its levity; the flying creature is efficient because of its weight.

Weight, however paradoxical it may appear, is necessary to flight. Everything which flies is vastly heavier than the air. The inertia of the mass of the flying creature enables it to control and direct its movements in the air. Many are of opinion that flight is a mere matter of levity and power. This is quite a mistake. No machine, however light and powerful, will ever fly whose travelling surfaces are not properly fashioned and properly applied to the air.

It was supposed at one time that the air sacs of birds contributed in some mysterious way to flight, but this is now known to be erroneous. The bats and some of the best-flying birds have no air sacs. Similar remarks are to be made of the heated air imprisoned within the bones of certain birds.1Feathers even are not necessary to flight. Insects and bats have no feathers, and yet fly well. The only facts in natural history which appear even indirectly to countenance the flotation theory are the presence of a swimming bladder in some fishes, and the existence of membranous expansions or pseudo-wings in certain animals, such as the flying fish, flying dragon and flying squirrel. As, however, the animals referred to do not actually fly, but merely dart into the air and there sustain themselves for brief intervals, they afford no real support to the theory. The so-called floating animals are depicted at figs. 5, 6 and 7.

It has been asserted, and with some degree of plausibility, that a fish lighter than the water might swim, and that a bird lighter than the air might fly: it ought, however, to be borne in mind that, in point of fact, a fish lighter than the water could not hold its own if the water were in the least perturbed, and that a bird lighter than the air would be swept into space by even a moderatebreeze without hope of return. Weight and power are always associated in living animals, and the fact that living animals are made heavier than the medium they are to navigate may be regarded as a conclusive argument in favour of weight being necessary alike to the swimming of the fish and the flying of the bird. It may be stated once for all that flying creatures are for the most part as heavy, bulk for bulk, as other animals, and that flight in every instance is the product, not of superior levity, but ofweightandpowerdirected upon properly constructed flying organs.

This fact is important as bearing on the construction of flying machines. It shows that a flying machine need not necessarily be a light, airy structure exposing an immoderate amount of surface. On the contrary, it favours the belief that it should be a compact and moderately heavy and powerful structure, which trusts for elevation and propulsion entirely to its flying appliances—whether actively moving wings, or screws, or aeroplanes wedged forward by screws. It should attack and subdue the air, and never give the air an opportunity of attacking or subduing it. It should smite the air intelligently and as a master, and its vigorous well-directed thrusts should in every instance elicit an upward and forward recoil. The flying machine must bemultum in parvo. It must launch itself in the ocean of air, and must extract from that air, by means of its travelling surfaces—however fashioned and however applied—the recoil or resistance necessary to elevate and carry it forward. Extensive inert surfaces indeed are contra-indicated in a flying machine, as they approximate it to the balloon, which, as has been shown, cannot maintain its position in the air if there are air currents. A flying machine which could not face air currents would necessarily be a failure. To obviate this difficulty we are forced to fall back uponweight, or rather the structures and appliances which weight represents. These appliances as indicated should not be unnecessarily expanded, but when expanded they should, wherever practicable, be converted into actively moving flying surfaces, in preference to fixed or inert dead surfaces.

The question of surface is a very important one in aviation: it naturally resolves itself into one of active and passive surface. As there are active and passive surfaces in the flying animal, so there are, or should be, active and passive surfaces in the flying machine. Art should follow nature in this matter. The active surfaces in flying creatures are always greatly in excess of the passive ones, from the fact that the former virtually increase in proportion to the spaces through which they are made to travel. Nature not only distinguishes between active and passive surfaces in flying animals, but she strikes a just balance between them, and utilizes both. She regulates the surfaces to the strength and weight of the flying creature and the air currents to which the surfaces are to be exposed and upon which they are to operate. In her calculations she never forgets that her flying subjects are to control and not to be controlled by the air. As a rule she reduces the passive surfaces of the body to a minimum; she likewise reduces as far as possible the actively moving or flying surfaces. While, however, diminishing the surfaces of the flying animal as a whole, she increases as occasion demands the active or wing surfaces by wing movements, and the passive or dead surfaces by the forward motion of the body in progressive flight. She knows that if the wings are driven with sufficient rapidity they practically convert the spaces through which they move into solid bases of support; she also knows that the body in rapid flight derives support from all the air over which it passes. The manner in which the wing surfaces are increased by the wing movements will be readily understood from the accompanying illustrations of the blow-fly with its wings at rest and in motion (figs. 8 and 9). In fig. 8 the surfaces exposed by the body of the insect and the wings are, as compared with those of fig. 9, trifling. The wing would have much less purchase on fig. 8 than on fig. 9, provided the surfaces exposed by the latter were passive or dead surfaces. But they are not dead surfaces: they represent the spaces occupied by the rapidly vibrating wings, which are actively moving flying organs. As, moreover, the wings travel at a much higher speed than any wind that blows, they are superior to and control the wind; they enable the insect to dart through the wind in whatever direction it pleases.

The reader has only to imagine figs. 8 and 9 cut out in paper to realize that extensive, inert, horizontal aeroplanes2in a flying machine would be a mistake. It is found to be so practically, as will be shown by and by. Fig. 9 so cut out would be heavier than fig. 8, and if both were exposed to a current of air, fig. 9 would be more blown about than fig. 8.

It is true that in beetles and certain other insects there are the elytra or wing cases—thin, light, horny structures inclined slightly upwards—which in the act of flight are spread out and act as sustainers or gliders. The elytra, however, are comparatively long narrow structures which occupy a position in front of the wings, of which they may be regarded as forming the anterior parts. The elytra are to the delicate wings of some insects what the thick anterior margins are to stronger wings. The elytra, moreover, are not wholly passive structures. They can be moved, and the angles made by their under surfaces with the horizon adjusted. Finally, they are not essential to flight, as flight in the great majority of instances is performed without them. The elytra serve as protectors to the wings when the wings are folded upon the back of the insect, and as they are extended on either side of the body more or less horizontally when the insect is flying they contribute to flight indirectly, in virtue of their being carried forward by the body in motion.

Natural Flight.—The manner in which the wings of the insect traverse the air, so as practically to increase the basis of support, raises the whole subject of natural flight. It is necessary, therefore, at this stage to direct the attention of the reader somewhat fully to the subject of flight, as witnessed in the insect, bird and bat, a knowledge of natural flight preceding, and being in some sense indispensable to, a knowledge of artificial flight. The bodies of flying creatures are, as a rule, very strong, comparatively light and of an elongated form,—the bodies of birds being specially adapted for cleaving the air. Flying creatures, however, are less remarkable for their strength, shape and comparative levity than for the size and extraordinarily rapid and complicated movements of their wings. Prof. J. Bell Pettigrew first satisfactorily analysed those movements, and reproduced them by the aid of artificial wings. This physiologist in 18673showed that all natural wings, whether of the insect, bird or bat, are screws structurally, and that they act as screws when they are made to vibrate, from the fact that they twist in opposite directions during the down and up strokes. He also explained that all wings act upon a common principle, and that they present oblique, kite-like surfaces to the air, through which they pass much in the same way that an oar passes through water in sculling. He further pointed out that the wings of flying creatures (contrary to received opinions, and as has been already indicated) strike downwards andforwardsduring the down strokes, and upwards andforwardsduring the up strokes. Lastly he demonstrated that the wings of flying creatures, when thebodies of said creatures are fixed, describefigure-of-8 tracksin space—the figure-of-8 tracks, when the bodies are released and advancing as in rapid flight, being opened out and converted intowaved tracks.


Back to IndexNext