Pythagoras bei den Indern.
Wir sehen also, dass der Pythagoras und seine Satzgruppe eine geradezu prominente Rolle beim indischen Opferkult spielt.
Wir kommen nun zu der Frage, wie alt ist der Pythagoras?
Ausgesprochen ist der Satz bei Baudhāyana, Katyāyana, Apastamba, z. B. Ap. Sulba S. I, 7: Die Diagonale eines Rechtecks bringt beides hervor, was die längere und die kürzere Seite desselben jede für sich hervorbringen, und I, 5: Die Diagonale eines Quadrates bringt eine doppelt so grosse Fläche des Quadrates hervor samasya dvi-karani (die das Doppelte hervorbringende). Der Satz ist also jedenfalls so alt als die genannten Sulba Sutras. Die des Apastamba bildeten den 24. Prasna (Buch) des Srauta Sutra, und dieses kann nach der Untersuchung der Sanskritisten nicht nach dem Anfang des 4. Jahrh. v. Chr. entstanden sein. Damit ist die Heron-Hypothese Cantors ohne weiteres beseitigt.
Aber der Pythagoras ist den Indern, musste den Indern viel länger bekannt sein. Zunächst ist das Baudhāyana S. S. wahrscheinlich mindestens 200 Jahre vor dem Apastamba Sulba Sutra redigiert; und dann ist klar, dass die Vorschriften selbst weit älter sind als ihre schriftliche Fixierung. Insbesondere scheint das Apast. Sulba Sutra durchaus die ältere Tradition festgehalten zu haben. Dann aber finden sich Vorschriften über die Vergrösserung z. B. des Asvamedha- und Sutrāmani-Altars und über die Konstruktion der Kamyas in der Taittirīya Samhita und über die Vergrösserung des falkenförmigen Normalaltars im Satapatha-Brāhmana, die ohne Pythagoras unmöglich sind. Nun ist die Taittirīya S. noch etwas älter als das Satapatha, und beide gehören zu einer Klasse von Werken, von denen Oldenberg (Buddha 3. Aufl. S. 19) sagt: »Wir werden schwerlich fehlgehen, wenn wir ihre Entstehung vom 10.-8. Jahrh. setzen.« Übrigens wird dieses Minimal-Alter durch Bürk l. c. nachgewiesen mittelstzweier Stellen, je eine aus der Taitt. Samh. und aus dem Sat. Brāh. Taitt. Samh. 6. 2, 4, 5 heisst es von der Vedi für das Somaopfer: Die westliche Seite ist 30 padas lang, diepraci36; die östliche Seite 24, und genau dasselbe sagt die Stelle im Satapatha-Brāhm. 10, 2, 3, 4.
Bei Baudhāyana erscheint der allgemeine Pythagoras an zweiter Stelle, und er setzt hinzu: diesen zweiten Fall erkennt man aus den Rechtecken mit den Seiten 3 und 4, aus 12 und 5, aus 15 und 8, aus 7 und 24, aus 12 und 35, aus 15 und 36, und Cantor selbst sagt 2. Aufl. S. 398: »Das ist nun offenbar der Pythagoräische Lehrsatz, erläutert an Zahlenbeispielen.« Das Fehlen der Hypotenuse darf nicht auffallen. Die Taittirīya- und die anderen Srauta-sutras sind die Yajurveden in der Redaktion der betreffenden Schule und diese enthalten »diejenigen Sprüche oder Verse, welche der die eigentliche Opferhandlung verrichtende Priester, der Adhvaryu, zu sprechen oder zu murmeln hatte.«
Auch die Brāhmanas bieten keine fortlaufende Darstellung des Opfers, sondern vielmehr Erläuterungen zu demselben. Im Sulba Sutra bei Apastamba, da wird die wirkliche Konstruktion gegeben und da tritt denn auch z. B. beim Dreieck 30 : 15 die ganzzahlige Hypotenuse 39 auf.
Das Alter des Pythagoras bei den Indern.
Somit ist derPythagoras bei den Indern aus dem 8. Jahrh. sicher konstatiert, aber höchst wahrscheinlich den Indern schon viele Jahrhunderte vorher bekannt gewesen. (H. Hankel.) — »Was nun das Alter der Sulba-Sutras betrifft, so weiss jeder, der sich mit indischer Literatur beschäftigt hat, dass jedes Erzeugnis nach seinem Zusammenhange mit der ganzen Literaturgruppe, zu der es gehört, beurteilt werden muss.« (E. Leumann.) Da kann nun kein Zweifel darüber sein, dass die Sulbas, sie mögen niedergeschrieben sein wann sie wollen, zur Yajurveden-Literatur gehören, d. h. zum Opferkult, sie bilden ein durchaus nötiges Kapitel des Srauta Sutra, der bis aufs i-Pünktchen detaillierten Lehre vom Opferzeremoniell und damit ist entschieden,dass ihr Inhalt bis etwa 900 v. Chr., vielleicht sogar noch höher hinaufreicht, und insbesondere zeichnen sich die Apastamba- wie die Taittirīya-Schule durch Bewahrung alter Tradition aus. Nun sind noch zwei Punkte zu besprechen. Indische Manuskripte sind verhältnismässig jung. Baumrinde kann sich an Dauerhaftigkeit nicht mit Papyrus, noch weniger mit gebrannten Tontafeln messen, zudem tritt die Schrift im eigentlichen Sinne bei den Indern verhältnismässig spät auf und ist nicht original. Dasselbe würde ja auch für das gewaltig umfangreiche Heldengedicht desMahabharatagelten. Aber abgesehen davon, dass Zeichen analog den Runen der Germanen vermutlich auch bei den Indern uralt waren, so war das Gedächtnis eben durch den Mangel an Schrift enorm entwickelt. Leute, die täglich ein Kapitel auswendig lernten, etwa wie die arabischen Geistlichen die Suren des Koran, die kannten bald ganze Werke auswendig, und auch heute sind solche Gedächtniskünstler nicht selten unter den Brahmanen.
Ein zweiter Einwand klingt einleuchtender. Die erstaunlich verklausulierten Vorschriften der Kalpasutras sollen Zeichen der Erstarrung und des Verfalls sein. Ganz abgesehen davon, dass die Indologen von Fach die Blüte des detaillierten Opferkults zwischen 1000 und 800 setzen, ist darauf folgendes zu erwidern: Das richtig vollbrachte Opfer hat die Macht, die Götter unter den Willen des Opferers zu beugen; ich habe ja schon bei Babylon darauf hingewiesen, dass die Arier sich der Gottheit nicht annähernd so knechtisch gegenüberstellten wie die Semiten. Ein durch Germanen, Hellenen und Inder, kurz durch die ganze Arische Welt hindurchgehender Zug ist das Misstrauen gegen die Götter, die Furcht vor ihrem Neide, die Teufelslehre knüpft hier an, und der Stammbegriff des Wortes Teufel ist das Sanskritische Wort für Gott. Grade aus der ältesten Zeit tiefster Religiosität stammt dies Gefühl und jene Genauigkeit ist grade ein Zeichen der naiven Periode, es darf dem Gott auch nicht die leiseste Handhabe geboten werden, seinem Unwillen über den auf ihn ausgeübten Zwang Ausdruck zu verleihen.
Ich glaube nicht, dass irgend ein heutiger Indologe bezweifeln wird, dass das Alter der Sulba-Sutras dem Inhalt nach bis mindestens 1000 heraufgeht, und dass sich die indische Geometrie auf dem Boden der Opferlehre, des Aufbaues der Altäre entwickelt hat.
Der Satz vom Gnomon.
Was aber die Entlehnung des Pythagoras von den Indern seitens des Pythagoras noch viel sicherer macht, das ist das Auftreten des sogenannten Gnomon, des Satzes von dem Ergänzungsparallelogramm. SchonBretschneidersagt, dass die Kenntnis dieses Satzes dem Pythagoras mutmasslich zur Auffindung des Satzes gedient hat, und Hankel sagt l. c. mit ahnungsvollem Scharfblick, diese Herleitung erscheine wahrscheinlich. Aber eben dieser Gnomon war den Indern auch bekannt.Baudhāyanageht mittelst desselben vom Quadrat mit der Seite 16 zu dem mit der Seite 17; er sagt z. B.: Wenn man aus 256 quadratischen Backsteinen ein Quadrat gebildet habe, so soll man nun 33 Backsteine hinzufügen. UndApastambasagt II, 7, es folgt nun eine allgemeine Regel: Man fügt: 1. das [Rechteck], welches man mit der jedesmaligen Verlängerung (und mit den Seiten des gegebenen Quadrates) umzieht [d. h. herstellt], an den zwei Seiten des Quadrates, nämlich an der östlichen und an der nördlichen hinzu, und 2. an der nördlichen Ecke das Quadrat, welches durch die Verlängerung hervorgebracht wird; dazu die Figur und das ist klipp und klar
(a + b)2= a2+ 2ab + b2.
Der Satz konnte ihnen, da sie meist mit Backsteinen arbeiteten, gar nicht entgehen.
Die Pythagoräischen Dreiecke bei den Indern.
Dass die Inder den Satz gefunden haben, ist natürlich nicht bewiesen, aber so lange babylonische und ägyptische ältere Quellen uns nicht zur Verfügung stehen, sind sie diejenigen, die am frühesten nachweisbar den Satz besessen haben und die Auffindung kann ganz gut so wieBürkes angibt, geschehen sein; sie kann aber auch ganz leicht direkt erfolgt sein, zunächst fürdas Dreieck 3, 4, 5 durch Drehen der Schnur, was ja eine ihnen ganz geläufige Operation war. Es kommen im Apastamba Sulba-Sutra 5 »erkennbare«, d. h. ganzzahlige rechtwinklige Dreiecke vor, die Inder sagen: Rechtecke.
Zeichnung Pythagoräisches Dreieck345512137242581517123537153639, letzteres
das wichtigste für die Vedi. Davon fallen die ersten 3 auch unter die von Proklos ausdrücklich dem Pythagoras, bezw. seinen Schülern zugeschriebenen Formeln 2a + 1; 2a2+ 2a; 2a2+ 2a + 1; die beiden folgenden sind platonisch 2a; a2- 1; a2+ 1.
Das letztere ist dem zweiten ähnlich; aus Apastamba V, 4 folgt, dass diese Ähnlichkeit ihm völlig klar war. Angesichts vonThibautsDarstellung inBühlersGrundr. ist es nicht uninteressant an der Hand der Sulba-Sutras nachzusehen, was den Indern jedenfalls um 800 v. Chr. an geom. Kenntnissen zur Verfügung stand. Ich benutzeThibautsÜbersetzung des Baudhāyana undBürksÜbers. des Ap. S. S. im 56. Bande der Zeitschrift der D. Morgenländischen Gesellschaft. Das Werkzeug, dessen sie sich für ihre Konstruktionen bedienten, war die Schnur (sulba oder rajju), und gelegentlich auch ein Bambusstab. Ich beginne mit der Konstruktion des einfachen Quadrats, Ap. Kap. VIII, 5–10, IX, 1.
»Man schneide an einem Bambusrohr in einer Entfernung gleich der Höhe des Opferers mit emporgehobenen Armen (der purusa, Menschenlänge, später war das Mass die babylonische Doppelelle) zwei Zeichen (A und B) ein, und in der Mitte ein drittes (die Mitte wird durch die zusammengelegteSchnur bestimmt). Man lege das Bambusrohr westlich von der Grube des Opferpfostens längs der prsthya (d. i. Rückenlinie, die schon zuvor ein für allemal von Westen nach Osten prak gezogen war, daher sie auch oft praci heisst). Schlage an den Einschnitten Pflöcke ein (D, E, F), mache (das Rohr) von den beiden westlichen (Pflöcken E und F) los und beschreibe (von F aus) in der Richtung nach Südosten einen Kreisbogen bis zu dem (östlichen) Ende (des zu konstr. Quadrats).« Entsprechend verfährt man von F aus, legt das Rohr von E über G nach H, schlage in H einen Pflock ein, befestige in H das mittlere Zeichen des Rohrs, lege die beiden andern an die Enden der beiden Linien und schlage in die beiden Zeichen zwei Pflöcke.
Altindische Geometrie.
Hier haben wir die Konstruktion des Lotes mittelst derSymmetrieachse, und die gemeinsame Tangente zweier Kreise im speziellen Falle und die Quadratkonstruktion, die wir mit 4 Kreisen ausführen, zugleich eine Art mechanischer Konstruktion, die bei den Hellenen Neusis heisst (s. unter Apollonius).
Diese Methode gilt als die älteste für die »Quadratmachung«, das Catur-asra-karana, älter als die des Baudhāyana, welche die Figur auf S. 148 zeigt. Von der einfachen Quadratform war dann der Agni vom einfachen bis zum 6fachen des Grundquadrats, es musste also mittels Pythagoras das Quadrat mit 2, 3, 4, 5, 6 multipliziert werden. Dann kam der Saratni-pradesa saptavidha, d. h. also der caturasra syena-cit, der viereckig falkenförmige, und dann die Vorschrift: Was beim 8fachen und den folgenden von den 7 verschieden ist, teile man in 7 Teile, und lasse in jedes purusa einen Teil eingehen, weil die Veränderung der Gestalt nicht schriftgemäss wäre. Auch hier hat Apastamba weitaus die ältere Methode, während B., wie oben gesagt, die Zunahme auf alle 10 Flächen gleichmässig verteilt, da auch paksa und puccha, Flügel und Schwanz, berücksichtigt werden, was schon recht komplizierte Teilungs- und Messungsoperationen voraussetzt. A. geht bis zum 101fachen des Quadratpurusa.
I, 2 Konstruktion der Achsentrapez-förmigen Opfergrube, Vedi, mittelst des rechtwinkligen Dreiecks 36, 15, 39.
Man nimmt eine Massschnur (pramāna, A1B1= 36, Fig. 1), verlängert sie um ihre Hälfte (bis G), macht dann am westlichen Drittel (d. h. also von G aus) weniger1/6desselben ein Zeichen (H). Man befestigt die beiden Enden (der verlängerten Schnur) an den Enden der prsthya, zieht an dem Zeichen nach Süden (daksina), ebenso verfährt man im Norden (uttara), und nachdem man vertauscht hat, nämlich die in A und G befestigten Enden, nach beiden Seiten (im Osten). Denn die Fertigstellung durch diese wird eine Verkürzung oder eine Verlängerung (12, 17) herbeiführen.
I, 3 wird dann zur Konstr. des rechten Winkels das Dreieck 3, 4, 5 analog benutzt (Fig. 2).
I, 4 und 5der Pythagoras.
Bei Apastamba zuerst in 4 der allgemeine:
Die Querschnur (aksnaya-rajju, Diagonale) eines Rechtecks, was die längere und kürzere jede für sich hervorbringt, das bringt sie zusammen hervor. Mittelst dieser und zwar solcher, die »erkennbar« sind, ist die Konstruktion (in § 2 u. 3) gelehrt worden. (jneya würde wohl besser mit »feststellbar« d. h. als ganzzahlige rechtw. Dreiecke wiedergegeben.)
5. Die Diagonale des Vierecks erzeugt die zweifache Fläche(ausdrücklich das Wort bhumi Fläche, dvis-tāvati bhumi), sie des Quadrats Doppeltes hervorbringende (dvi-karani). Viereck, schlechtweg catur-asra, ist wie das griechische τετραγωνον das Quadrat, um aber ganz deutlich zu sein, wird es im Nachsatz sama »das mit gleichen Seiten« genannt. Katyāyana unterscheidet sogar die beiden Arten gleichseitiger Vierecke.
Wurzel aus 2.
6.Konstruktion des besseren Näherungswertes der √2.
Man verlängere das Mass A B um seinen dritten Teil und diesen wieder um seinen vierten Teil weniger einem 34stel dieses vierten Teils (Fig. 3). Die √2, die dvi-karani von karana »machen«, heisst (sa-visesa) d. h.die Zahl mit dem Rest. Die Verlängerung ist der visesa; √2ist also 1 +13+13·4-13·4·34=577408= 1,4142156; da √2= 1,414213, so ist der Fehler kleiner als 3 Einheiten der 6. Dezimale. Der Näherungswert des Baudhāyana ist1712= 1,417, also genau bis auf 0,003.G. Thibauthat ganz richtig (bis auf einen kleinen Rechnungsfehler) angegeben, wie sie zu beiden Näherungswerten gekommen sind. Sie suchten zunächst nach einem Quadrat, das doppelt so gross wie ein anderes sei, und fanden, dass 2·122annähernd gleich 172, und setzten daher √2=1712, wodurch der Gott ja nicht zu wenig erhielt. Da sie aber genauer verfahren wollten, so setzten sie (17 - x)2= 288. Dass ihnen der Satz vom Gnomon bekannt, wird gleich aus dem Text nachgewiesen werden. Das ergab 34x - x2= 1, und indem sie das ersichtlich sehr kleine x2vernachlässigten, setzten sie 34x = 1, also x =134und somit die Dvi-karani (rajju) gleich1712-112·134, was ja immer noch eine Zugabe enthielt.
Hervorzuheben ist hier zunächst dieintuitive Erfassungder Ähnlichkeit. Sodann setzt die Konstruktion die Teilung der Strecke im vollen Umfang voraus, aber auch Ansatz und Lösung einer Gleichung. Ausserdem geht aus der Bezeichnung der √2als der Zahl mit dem Rest hervor, dass sie sich bewusst waren, die √2zwargeometrisch, aber nicht arithmetisch genau konstruieren zu können, d. h. also, dass sie bis zu einem gewissen Grade in diesem einen Falle die Erkenntnis derIrrationalenhatten. Ob sie denBegriffdes Areton, des Alogon gehabt haben, bleibt freilich durchaus zweifelhaft; aber, und darauf ist der Hauptwert zu legen,diese Näherungskonstruktion kann keine Frucht des Zufalls sein, sondern sie musste eine Folge zielbewusster Tätigkeit sein.
Kap. II, 1 wird dann die eben konstruierte Savisesa-Grösse zur Konstruktion des Quadrats benutzt. Sehr hübsch ist das Sama-caturasra-karana in I, 7, wo gleich alle 4 Quadrate des Atman des Falkenförmigen konstruiert werden mittelst der Raute, die aus zwei gleichseitigen Dreiecken besteht. (Euklid I, prop. 1. Die Figur wird wohl genügen.)
II, 2 wird dann, wie schon oben S. 156 beschrieben, die dvi-karani und mit ihr nach I, 4 die tri-karani und mittelst ihrer in II, 3 die √1/3als1/3√3konstruiert.
Anwendungen des Pythagoras.
II, 4 wird der Pythagoras zur Addition zweier Quadrate verwandt, II, 5 dann zur Subtraktion; es wird einregelrechter Beweisin N 6mittelst des Pythagoras gegeben. Wir sehen, dass die Bedeutung des Pythagoras für die Flächenrechnung vollkommen klar erkannt ist; es wird systematisch multipliziert, addiert, subtrahiert und dann dividiert, wozu es erforderlich ist, ein Rechteck in ein Quadrat zu verwandeln;dies lehrt I, 7. Das Rechteck heisst dirgha-caturasra, directum quadrangulum, die Aufgabe das sama-caturasra-cikirsana. Wünscht man das Rechteck in ein Quadrat zu verwandeln, so schneide man mit der kürzeren Seite ab, teile den Rest, füge an beiden Seiten hinzu, fülle den leeren Platz mit einem zugefügten Stück, dessen Subtraktion gelehrt worden ist.
Addition zweier Quadrate.Subtraktion zweier Quadrate.
Addition zweier Quadrate.
Addition zweier Quadrate.
Subtraktion zweier Quadrate.
Subtraktion zweier Quadrate.
M. H. Diese Verwandlungsetzt notwendig die Analysisvoraus a(a + b) = a2+ ab = a2+ 2ab2= a2+ 2ab2+ (b2)2- (b2)2= (a +b2)2- (b2)2.
Sie kommt m. W. bei den Hellenen nicht vor.
III, 1. Will man ein Quadrat in ein Rechteck verwandeln, so mache man eine Seite so lang als man das Rechteck wünscht. (Es ist ganz klar, dass hier die Rechnung xy = a2die Analyse gibt, und dass sie wissen, dass eine Seite unbestimmt bleibt, also »so lang sein kann als man wünscht«.) Darauf füge man den Rest zu dem Rechteck hinzu wie es passt. Die Methode wird dann von dem Kommentator Sundara des Baudh. an dem Beispiel des Quadrats mit der Seite 6 erläutert (s. Fig.), das in ein Rechteck mit der Seite 4 verwandelt werden soll 36 = 4 . 6 + 4 . 2 + 4 . 1 = 4(6 + 2 + 1) = 4 . 9.
Hochinteressant ist es, dass hier dieInhaltsgleichheitwie beiWolfgang Bolyaiaufgefasst wird. Der Kommentator des Baudh.,G. Thibaut1875 l. c. 247, gibt dann unsere auf den Satz von den Ergänzungsparallelogrammengegründete Kegel, doch kommt dies für die altindische Geometrie nicht in Betracht.
Verwandlung des Quadrats in den Kreis und v. v.
III, 2.Verwandlung eines Quadrats in einen Kreis(nötig für den Aufbau des rathacakra-cit, s. Fig.), denn »so viel als verloren geht, kommt hinzu«. Der Kreis hat den Radius MN = MG +13GE und wenn MG = 1 gesetzt wird, so ist MN = 1 +13des visesa = 1 + 0,414213 : 3 = 1,138071, also 1,1380712π = 4, also π = 3,0883 = 18(3 - 2√2) = 105/34. Die Regel scheint durch Probieren gewonnen, die halbe Seite ist zu klein, und die halbe Diagonale zu gross.
III, 3.Kreis-Quadratur, nötig für Vervielfältigung des »Wagenradförmigen«. Als Seite wird 13/15 des Durchmessers genommen, also π = 169 . 4/225 = 3,004. Baudhāyana hat genau den vorhin ermittelten Wert für π nämlich 105/34 und gibt als Regel an78+18 . 29-18 . 29 . 6+18 . 29 . 6 . 8vom Durchmesser. Dies setzt erstens einesehr bedeutende Gewandtheit in der Bruchrechnungvoraus, zweitens die Auflösung einer reinquadratischen Gleichung, d. h. die Ausziehung der Quadratwurzel, da der Wert λ =√π4=√105136= √0,77205882353= 0,8786688mit seiner Zahl 9785/11136 = 0,878682 übereinstimmt bis auf 13 Einheiten der 6 Dezimale!
III, 7. Eine Schnur bringt jedesmal soviel Reihen hervor als sie Masse enthält, d. h. ein Quadrat über a Längeneinheiten enthält a Reihen von Flächeneinheiten zu a; also die Inhaltsformel des Quadrates, die in § 4, 6, 8, 10 spezialisiert ist.
Der Satz vom Gnomon.
III, 9.Der Satz vom Gnomon: Es folgt nun eine allgemeine Weise (nämlich ein Quadrat zu vergrössern, s. Fig.). Man fügt das (Rechteck), welches man mit der jedesmaligen Verlängerung umzieht, an zwei Seiten (Norden und Osten)hinzu und an der (nordöstlichen) Ecke das Quadrat, welches durch die betreffende Verlängerung hervorgebracht wird. — D. h. also nichts anderes als (a + b)2= a2+ 2ab + b2.
Der Satz vom Gnomon konnte ihnen, da sie ihre Quadrate vergrösserten und meist mit quadratischen Backsteinplatten arbeiteten, nicht entgehen, und dass in ihm die Quelle des Pythagoras liegt, haben Bretschneider und Hankel gesehen. Der durch die punktierte Linie angedeutete Beweis, der sich bei Bhaskara findet, heisst noch heute der indische und beruht vermutlich auf uralter Tradition.
Dreieck und Trapez.
Kap. IV, 4 wird gelegentlich der Anlage der drei Feueraltäre (S. 145) die Konstruktion des Dreiecks aus den drei Seiten gelehrt.
Man teilt eine Schnur gleich dem Abstand zwischen garhapatya und ahavanīya (der, falls der Opferpriester ein brāhmana war, 8 Schritt betrug) in 5 oder 6 Teile, fügt einen 6. bezw. 7. Teil hinzu, teilt das Ganze in 3 Teile und macht am westlichen Drittel ein Zeichen, dann befestigt man die beiden Enden am garh. und ahav., zieht die Schnur an dem Zeichen nach Süden und macht ein Zeichen; das ist, gemäss der Schrift, die Stätte des daksinagni.
Sie wissen, wie man sieht, dass 2 Seiten eines Dreiecks zusammen grösser sind als die dritte.
Kap. V ist von besonderer Bedeutung. Zuerst § 1 die Konstruktion der grossen Vedi für das Somaopfer aus I, 2, nur dass statt des Rechtecks das Achsentrapez gezeichnet wird; das rechtw. Dreieck oder nach indischem Sprachgebrauch das Rechteck ist das mit den Seiten 36 und 15 und der Diagonale (Hypotenuse) 39. Ganz besonders ist § 3 interessant. Es heisst da: [Sind] die beiden Seiten eines Rechtecks 3 und 4, so ist die Diagonale 5. Mit diesen legt man die beiden amsa (Schultern), nachdem man sie je um ihr Dreifaches verlängert hat, fest, undnachdem sie um ihr Vierfaches verlängert worden sind, die beiden sroni (die Schenkel).
Ähnlichkeit.
Hier leuchtet ein, dass sie mit dem Begriff der Ähnlichkeit vertraut gewesen sind. Das gleiche gilt bei No. 4. Die beiden Seiten 12 und 5, die Diagonale 13. Mit diesen die beiden Amsa und nachdem sie um ihr Doppeltes verlängert sind, die sroni.
V, 5. Das Dreieck 15, 8, 17 gibt die sroni; sind die Seiten 35 und 12, so ist die Diagonale 37, mit diesen die amsa.
So viele »(als rational) feststellbare« Konstruktionen der vedi gibt es.
V, 7. Die grosse Vedi (d. h. die sub 2–5 konstruierte Saumiki Vedi) misst 972 (Quadrat) pada (Fuss). Man ziehe vom südlichen Amsa zur südlichen sroni hin zu 12 (s. Fig.). Darauf drehe man das abgeschnittene Stück um und füge es auf der Nordseite hinzu.So erhält die Vedi die Gestalt eines Rechtecks.In dieser Form berechne man den Inhalt 27 . 36 = 972.
Hier haben wir einen vollgültigen Beweis, denselben, den wir heute noch geben,
V, 8. Für die Sautrāmani-Zeremonie wird gelehrt: Man opfere in dem 3. Teil der vedi des Soma-Opfers; hier tritt die trtīya-karanī an Stelle des pramana (des Grundmasses). Oder man konstruiere mit der tri-karani (√3).Hierbei sind die kürzeren Seiten 8 und 10 und die prsthya(die Rückenlinie) das 12fache desselben. (Ich vermute, dass die Vedis den Querschnitt durch einen menschlichen Rumpf darstellen sollten.) Hier ist die Ähnlichkeit sogar erfasst alsAbänderung des Massstabs!
Und das wird durch die Vorschriften in V, 10 und VI, 1 bestätigt. In V, 10 heisst es: Die Vedi des asva-medha, des Rossopfers, soll das Doppelte der saumiki vedi sein und in VI, 1 heisst es: Es tritt die dvi-karani des Masses an Stelle desselben!
Es folgen nun in den Sulba-Sutras die detaillierten Vorschriften für den Aufbau der verschiedenen Kamyas; sie sind alle in Beziehung auf die speziellen Wünsche gedacht, der falkenförmige Agni z. B. für den, der die himmlische Welt zu erlangen wünscht, weil der Falke sich dem Himmel am nächsten aufschwingt. Die Vorschriften für die Anfertigung der Ziegel offenbaren ein ganzes Teil mathematischer Kenntnisse, insbesondere der Flächenteilung, wie beim Anblick der Figur das vakra-paksa-syena-cit des Falken mit den krummen Flügeln klar wird.
vakra-paksa-syena-cit.
vakra-paksa-syena-cit.
Aber das hier Mitgeteilte genügt, um den Standpunkt der indischen Weisen etwa um 900 v. Chr. zu beurteilen. Zunächst ist es Ehrenpflicht, des Mannes zu gedenken, der zuerst auf die Sulba-Sutras als Schlüssel zur Geometrie der Inder hingewiesen. Es warA. C. Burnell, der in seinem »Catalogue of a Collection of Sanscrit Manuscripts« 1869 p. 29 gesagt hat: »Wir müssen die Sulba-Teile der Kalpa-sutras ansehen als die ersten Anfänge der Geometrie unter den Brahmanas.« Die Kenntnisse selber sind achtbar genug; sie umfassen so ziemlich das ganze erste Buch des Euklid inkl. I, 47 (der Pythagoras), Streckenteilung, Flächenberechnung, Ähnlichkeit und die Kenntnis einer Anzahl ganzzahliger rechtwinkliger Dreiecke.
Altindische Arithmetik.Die Null bei den Indern.
Auch die arithmetischen Kenntnisse der Sulba-sutras sind keineswegs unbedeutend; sie kennen Quadratwurzelausziehung, auch Auflösung von Gleichungen, sind mit der Bruchrechnungvertraut. Gegen die Rigveda-Zeit zeigen die Yajur-veden sehr erhebliche Fortschritte. H. Zimmer l. c. p. 348 gibt an, dass die höchste bestimmte Zahl im Rig-veda 100000 sata sahasra ist; aber schon in der Yajurveden-Zeit, wie z. B. in der Taitt. Samh. und im Satapatha-Brahmana finden sich Zahlworte bis zu 10 Billionen, und im Mahabhārata Zahlworte für die Potenzen von 10 bis 1017. Im Rig-veda kommen nur wenig Brüche vor; ardha halb, auch sami, pada ein Viertel (der Fuss des Rindes), tri-pad drei Viertel, sapha ein Achtel (Halbhuf der Kuh), kala ein Sechzehntel. Als eine Grosstat, wozu sich zwei gewaltige Götter, Indra und Vishnu, vereinigen müssen, gilt die Teilung von 1000 durch 3. Dagegen finden sich schon im Satapatha-Br. eigene Namen bis zu 15-430-1als Zeitmass, und die Sulbas, insbesondere Baudh., haben hoch entwickelte Bruchrechnung. Was das indische Positionssystem betrifft, kann höchstens noch, vgl. Babylonien, die Einführung der Null in Frage kommen. Nun kommt die Null vor in dem Manuskript vonBakhshali. In Bakhshali (im nordwestlichen Indien) wurden 1881 Bruchstücke eines Manuskripts auf Birkenrinde ausgegraben. Da die Indologen das Alter dieses Manuskriptes oder seines Inhaltes jetzt auf den Beginn unserer Ära setzen, so müssen wir es hier besprechen. Es enthält Textgleichungen, auch diophantische, und die Kuttaka- d. h. Zerstäubungs- id estKettenbruchmethode; diese würde damit vermutlich schon 500 Jahre vorAryabhataindischer Besitz gewesen sein; ferner Summation arithmetischer Reihen, ein eigenes Subtraktionszeichen; und was für uns das Bedeutsamste ist, es enthält die Null in Form eines Punktes . als Zeichen für das leere Feld und als Bezeichnung der Unbekannten, die ja auch vorläufig leer ist. Die erste sonstige Erwähnung der Null, auch in Form eines Punktes, findet sich in Subandhu's Vasavadatta, wo die Sterne mit Nullen verglichen werden, die der Schöpfer bei der Berechnung des Wertes des Alls wegen der absoluten Wertlosigkeit des Samsara (Weltgetriebe) mit seiner Kreide — der Mondsichel — überall auf das Firmament einzeichnete. (G. Bühler, Grundrissder Indo-Arischen Philol. u. Altertumskunde II, 11 p. 78.) Die Null in Kreisform kommt zuerst in den Cicavole Kupferplatten vor. Ihr Name ist eigentlich sunya-bindu und wird abgekürzt zu sunya oder bindu. Über die verschiedene Bezeichnung der Zahlen und Ziffern vgl. Bühler l. c. Kap. VI, die Zahlenbezeichnung.
Eleaten: Xenophanes, Parmenides.
Wenden wir uns nun aus Indien nach Hellas zurück und zunächst zu den Eleaten.
Xenophanesaus Kolophon, ein jüngerer Zeitgenosse des Pythagoras, ist ihr Stifter. Das Weltganze als unvergängliches, ewig unveränderliches, ewig gleichartiges Sein ist sein Gott, er ist der erste wirkliche Pantheist. Wenige Fragmente seiner Lehrgedichte sind erhalten, aus denen ich die Stellen anführe:
ἑις θεος εν τε θεοισι και ανθρωποισι μεγιστος,ουτε δεμας θνητοισιν ὁμοιιος ουτε νοημα.
ἑις θεος εν τε θεοισι και ανθρωποισι μεγιστος,ουτε δεμας θνητοισιν ὁμοιιος ουτε νοημα.
Ein Gott unter den Göttern und unter den Menschen der Grösste, nicht an Gestalt den Menschen vergleichbar noch auch an Denkkraft.
Und an einer andern Stelle sagt er, nachdem er gegen den Anthropomorphismus geeifert: »Wenn die Pferde und Ochsen ihre Götter malen könnten, so würden sie dieselben ohne Zweifel als Pferde und Ochsen darstellen.« Xenophanes ist der Urheber der Lehre vom ἑν και παν, von der Einheit aller Dinge, wie Platon und Aristoteles, Theophrast und Timon übereinstimmend bezeugen. Ob der Pantheismus des Xenophanes von denPythagoräernbeeinflusst ist, ob beide von denOrphikern, und diese wieder von denIndernhierin beeinflusst sind, wage ich nicht zu entscheiden.
Xenophanes, der sich in Elea in Lukanien niedergelassen hatte, ist für uns besonders wichtig, als Lehrer desParmenidesaus Elea, des eigentlichen Hauptes derEleaten, welche noch weit schärfer als die Pythagoräer, ja bis zum Extrem, die Priorität der Begriffe vor den Erscheinungen gelehrt haben. Geboren etwa um 515 aus vornehmer Familie, fällt seine ακμή,seine Blütezeit, etwa um 480. Die Lehre der Pythagoräer war ihm vertraut; ohne der Schule anzugehören, hat er sich die Sittenlehre der Pythagoräer zur Richtschnur genommen, während er als Philosoph die Lehre des Xenophanes, welche hauptsächlich theologischen Charakter hatte, weiterbildete. Er hat seine Ansichten in seinem Lehrgedicht περί φύσεως niedergelegt, von dem uns nicht unbedeutende Bruchstücke erhalten sind, welche zuletzt vonDielsmit dem ganzen Rüstzeug philologischer Schärfe herausgegeben sind. (H. Diels, P. Lehrgedicht, griech. und deutsch, Berl. 1891.)
Eleaten: Parmenides, Zenon.
Parmenidesging weit über Xenophanes hinaus. Es gibt, ihm zufolge, nur ein einziges unteilbares lückenloses Kontinuum des Seienden, unveränderlich, nicht werdend, nicht geworden, unbeweglich, zeitlos. Es ist klar, dass die Eleaten mit der Veränderung auch das Zeitproblem ausschalteten. Die Zeit, mitsamt der Vielheit der Dinge, ihr Werden und Vergehen, wird uns durch die Sinne vorgetäuscht (dieMajader Inder!), als Bleibendes, als einziges Sein erkannten sie nur das des Begriffes, und das enthält die Zeit nicht mehr. Indem Parmenides aussprach, dass wahres bleibendes Sein nur dem Begriffe zukommt, identifizierte er Denken und Substanz. Das für uns interessanteste ist, was Parmenides über den Raum sagt. Da zitiere ich l. c. Vers 42 ff. die Stelle:
αυταρ επει πειρας πυματον, τετελεσμενον εστιπαντοθεν, ευκυκλου σφαιρης εναλιγκιον ογκωιμεσσοθεν ισοπαλες παντηι· το γαρ ουτε τι μειζονουτε τι βαιοτερον πελεναι χρεον εστι τηι η τηι.
αυταρ επει πειρας πυματον, τετελεσμενον εστιπαντοθεν, ευκυκλου σφαιρης εναλιγκιον ογκωιμεσσοθεν ισοπαλες παντηι· το γαρ ουτε τι μειζονουτε τι βαιοτερον πελεναι χρεον εστι τηι η τηι.
»Aber da es eine letzte Grenze gibt, so ist er von allen Seiten aus abgeschlossen, der wohlgerundeten Kugel ähnlich an Gestalt, von der Mitte aus an Kräften gleich überall, denn da darf es kein Mehr oder Weniger, Hier oder Dorten geben.« Hier also bei Parmenides treffen wir Jahrtausende vorRiemanndie Hypothese von der Endlichkeit des Raumes an und zugleich das Axiom von der Gleichförmigkeit des Raumes. Parmenideshat auch das Verdienst, auf dasProblemderKontinuitätweit deutlicher hingewiesen zu haben als die Pythagoräer, die das Problem allerdings auch in ihrer geometrischen Veranschaulichung der Zahlenbeziehungen gestreift haben. UndZeno, der dritte grosse Eleat, hat grade durch diese Frage seine bleibende Stelle in der Geschichte der Mathematik:
Die Paradoxien des Zenon.
Zenon(Ζηνων) aus Elea, der Sohn des Teleutagoras, ist ungefähr 500 geboren und seine Reife fällt um 450. Es ist sein Verdienst, die Schwierigkeiten und Widersprüche, welche der Begriff der Bewegung, wie überhaupt der der Veränderung enthält, aufgedeckt zu haben, Widersprüche, welche zu ihrer Auflösung denGrenzbegriff, diesen wichtigsten aller mathematischen Begriffe erfordern. Eine Geschichte derDifferentialrechnungwird stets von Zeno und seinen berühmtenParadoxienauszugehen haben. Von Zeno aufgestellt, um einerseits die Einheit und Unveränderlichkeit des Seins und andrerseits die Unbeweglichkeit des Seienden zu beweisen, sind sie uns in der Fassung desAristoteles, Physik 202a, 210b erhalten und die Beweise insbesondere durch den Kommentar desSimpliciuszur Physik des Aristoteles.
A) Beweise gegen die Vielheit des Seienden.
1. Wenn das Seiende Vieles wäre, so müsste es zugleich unendlich klein und unendlich gross sein. Unendlich klein, denn jede Vielheit ist Summe von Einheiten, diese selbst aber unteilbar (Pythagoräer), also hat sie keine Grösse, ist nichts, also ihre Summe desgleichen. Andrerseits muss jede solche Vielheit, um zu sein, Grösse haben, ihre Teile voneinander entfernt sein, die Teile der Teile desgleichen und so fort, also müssen sie unendlich gross sein.
2. Zeigt Zeno, dass das Viele auch der Anzahl nach begrenzt und unbegrenzt zugleich sein müsste.Begrenzt, denn es ist so Vieles als es ist, nicht mehr und nicht weniger.Unbegrenzt, denn zwei Dinge sind nur dann zwei, wenn sie voneinandergetrennt sind; damit sie getrennt sein, muss etwas zwischen ihnen sein usw.
Als konsequenter Denker und ausgezeichneter DialektikerleugnetZeno in Numero 3 denRaum.
3. Die Dinge scheinen sich im Raum zu befinden, aber das ist nicht wahr, es gibt gar keinen Raum. Denn jedes Ding ist in einem andern; ist nun der Raum wirklich, so ist auch er in einem andern Dinge, und muss doch wohl in einem andern Raume sein; von diesem gilt nun dasselbe wie vom ersten, es ist also kein letzter Raum denkbar, mithin auch kein erster und überhaupt keiner. (Dies ist wörtlich Kants Antinomie.)
4. Ein fallendes Korn macht kein Geräusch, aber der Scheffel, also auch das Korn, denn 0 + 0 wäre 0; also täuscht uns das Gesicht, wenn es uns eine Vielheit von Körnern vorspiegelt.
B)Beweise gegen die Bewegung.
1. Der sich bewegende Körper, der durch unzählig viele Punkte hindurchgehen müsste, was nicht möglich.
2. DerAchilleus; Achilleus, der 100mal schneller als die Schildkröte ist, kann diese, wenn sie einen Vorsprung von einem Stadion hat, nicht einholen, denn während er das Stadion zurücklegt, kommt die Schildkröte um 0,01 vorwärts, und so fort in inf.
3. Der fliegende Pfeil müsste in einem bestimmten Augenblick an einem bestimmten Orte sein und nicht sein.
Ein vierter Beweis bezieht sich auf die Relativität der Bewegung. (Einem ruhenden Körper gegenüber scheint die relative Bewegung zweier sich mit gleicher aber entgegengesetzter Geschwindigkeit bewegender Körper verdoppelt.) Sie sehen, wie bei Zeno der Begriff der unendlichen Reihe nach Gestaltung ringt; den infinitären Prozess hat er erfasst, aber noch nicht seinen Abschluss, denGrenzbegriff, auf dem dieKonvergenzder Reihe beruht, und der zugleich dasDifferentialliefert. Den hat erst ein grösserer als Zeno, den hatDemokriterkannt. Aber Sie sehen auch, dass die ganze Lehre von der Bewegung, von der Veränderung überhaupt, von der Stetigkeit, von der Grenze ihre Quelle beiZenohat, der seinerseits in der Erfassung des Widerspruchs an die Pythagoräer anknüpft.
Die Bearbeitung der Paradoxien des Zeno hat sehr viel Gedankenarbeit hervorgerufen, ist doch nachHegeldie Auflösung des Widerspruchs die Hauptarbeit des menschlichen Geistes. Die Paradoxien des Zeno kehren in anderer Form immer wieder. Es genügt, anBerkeleyzu erinnern und seine Kritik des infiniment petit. Aber sie haben noch heutigen Tages ihre Geltung für nicht hinlänglich philosophisch durchgebildete Mathematiker, erst vor wenigen Wochen las ich in einer mir zur Durchsicht gegebenen pädagogischen Arbeit so ziemlich dieselben Einwände.
Insbesondere haben sich, wie in der Natur der Sache liegt, die Scholastiker mit Zenon beschäftigt, und namentlich der grösste der Scholastiker und einer der grössten Denker überhaupt,Thomas von Aquino, hat die Paradoxien mit grossem Scharfsinn kritisiert. Die völlige Überwindung der Schwierigkeiten danken wirGalilei,Leibniz,Bolzano, an denKerryin Versuch eines Systems der Grenzbegriffe anknüpft. Aber vor allen diesen, insbesondere auch vorG. Cantor, hatAristotelesdas schwierigste Paradoxon, B 1, aufgeklärt. Die einzelnen Punkte der Raum- und Zeitstrecke zwischen Anfang und Ende der Bewegung lassen sich gegenseitig eindeutig einander zuordnen, d. h. in der SpracheG. Cantors: die Raum- und Zeitstrecke sind von gleicherMächtigkeit, und dieser so hochmoderne Begriff hat seine Quelle beiAristoteles, der Zeno gradezu als denErfinder der Dialektikbezeichnet.
Was den Achilleus betrifft, so bildet er heutzutage eins der typischen Beispiele der Grenze, indem die Differenzen zwischen den Reihenzahlen 1,01und [11/9] eineNullreihebilden.
Mit den Paradoxien des Zeno haben sich auchBayle,DescartesundLeibnizbeschäftigt, von Neueren nenne ichCh. L. Gerling(Marburg).Ed. Wellmann, Prgr. Frankf. a. O. 1870,P. Tannery, Rev. philos. B. X, 1885.Tannerybehauptet, dass Zeno nur habe beweisen wollen, dass der Raum nicht aus Punkten, die Zeit nicht aus Augenblicken bestehe, aber ohne Beweise für seine Behauptung beizubringen. Diese Sätze selbst sind vonAristotelesPhys. VI, 1, 231 a 24 bewiesen. Ich erwähne nochJ. H. Loewe, Böhm. Gesellsch. d. Wiss. VI. Folge 1. Bd. 1867, undÜberweg, System d. Logik 5. Aufl. 1882 S. 245 ff.