SUBMARINE WARFARE.
The practicability of submarine navigation was established by the Dutch over two hundred and fifty years ago. Then, as now, its underlying idea, its claim for recognition, was the advantages the system gave in marine warfare. Nor is its battle value overestimated; for such a boat, if successful, exercises an influence that is great in material uses, that is enormous in moral effects. Its development has been slow; for though the problem was solved long ago, no practical results were attained until within the last thirty years. During the late war submarine boats were for the first time employed with such sufficient success that the great maritime powers have considered the type to have an importance which justified investigation. They reached this conclusion because no plan of defence exists which could defy the operations of a weapon that attacks not only matter but mind.
There is no danger which sailors will not face; because their environments are always perilous, and their traditions are rich with glorious records of seeming impossibilities overcome by pluck and dash. They are willing always, even against the heaviest odds, to accept any fighting chance. They know that the unexpected is sure to happen. The spirit that made Farragut take the lead of his disorganized line in Mobile Bay still lives; his clarion call of “Damn the torpedoes! Follow me!” is a sea instinct, born of brine and gale, which never dies.
Whatever coast fighting or port blockading may demand, sea battles are unchanged. History teaches that ships always closed for action, and that vessels fighting each other from beyond the circling horizons, or hull down, with long-range guns, are the dreams of shore inventors. Guns and ships have changed, but men and the sea are changeless. The fighting distance of to-day is not much greater than it was in Nelson’s or in Perry’s time; and the next naval war will surely prove that battle will be nearly as close as in Benbow’s age, when the gallant tars combed innocuous four-pound shots out of their pigtails, and battered each other within biscuit-throwing distance with deftly shied chocking quoins.
It is fortunate, in the interest of good, square fighting, that the operative sphere of submarine boats is limited to coast work. Fortunate, because while the bravery and the grit are the same, the threatening of a danger which cannot be squarely met is apt to benumb the heart of the stoutest. A sailor hates to run; he does not care to fight another day when the chance of the present is open before him; but of what avail are the highest courage and skill against a dull, venomous dog of an enemy who crawls in the darkness out of the deeps, and, silently attaching a mine or torpedo, leaves his impotent foe to sure destruction?
Submarine mines may be countermined; when necessary, defied; guns maybe silenced and torpedo-boats so riddled by rapid-fire guns that they will be disabled beyond the radius of their effective action; automatic torpedoes may be checked by netting, or by the prompt manœuvrings of the attacked vessel; ship may always fight ship. But what is the chance for brain or brawn against a successful submarine boat, when the mere suspicion of its presence is enough in itself to break down the blithest, bravest heart of oak. It is here that their moral effects are enormous.
The history of their development may be briefly told. In 1624 Cornelius Van Drebble, a Hollander, made some curious experiments under the Thames. His diving-boat was propelled by twelve pairs of oars and carried a dozen persons, among them King James I. In 1771 Bushnell, of Connecticut, constructed a boat which Washington described in a letter to Jefferson as being a “machine so contrived as to carry the inventor under water at any depth he chose, and for a considerable time and distance with an appendage charged with powder, which he could fasten to a ship, and give fire to it in time sufficient for his returning, and by means thereof destroy it.” Fulton borrowed Bushnell’s idea, and in 1801 experimented successfully with it in the Seine. He descended under water, remained for twenty minutes, and after having gone a considerable distance, emerged. In 1851 a shoemaker named Phillips launched in Lake Michigan a cigar-shaped boat forty feet long and four feet in its greatest diameter. This was his first attempt, but in the course of a few years he so far perfected his arrangements for purifying the air that on one occasion he took his wife and children, and spent a whole day in exploring the bottom of the lake. In the history of these boats, as told in the report of the Board on Fortifications, Phillips afterwards descended in Lake Erie, near Buffalo, and never reappeared.
Many other attempts were made, the most successful being that of a Russian mechanic, who in 1855 built a diving-boat which was under such perfect control that he could remain submerged for eight hours. The boat which sank theHousatonicwas a remarkable submarine vessel; it was about thirty-five feet long, built of boiler iron, and had a crew of nine men, of whom eight worked the propeller by hand, while the ninth steered and governed the boat. She could be submerged to any desired depth or could be propelled on the surface. After various mishaps she went out of Charleston harbor, attacked and sank the United States steamerHousatonic, then on blockade duty; as she never returned, it is supposed that the reflex action of the torpedo destroyed her.
In the report quoted above the results already attained in submarine navigation are thus summarized by Captain Maguire, U.S.A.:
1. Submarine boats have been built in which several persons have descended (with safety) for a great distance below the surface of the water.
2. Submarine boats have been propelled on and under the surface in all directions.
3. The problem of supplying the necessary amount of respirable air for a crew of several persons for a number of hours has been solved.
4. Steam, compressed air, and electricity have been used as the motive power.
5. The incandescent electric light has been used for illuminating the interior of submarine boats.
6. Seeing apparatus have been made by which the pilot, while under water, may scan the horizon in all directions.
7. A vessel has been in time of war destroyed by a submarine boat. The latter, it is true, was also sunk, but it was for reasons that are no longer in force.
As yet no perfectly successful boat of this type has been tried in any naval war, but there is no question that they will be used at the very first opportunity. Compared with a surface boat, the submarine has the following advantages:
1. It does not need so much speed. The surface boat demands this quality so as to get quickly within striking range of its torpedo, and then to escape speedily out of range of machine guns, etc.
2. Its submersion in the presence of the enemy prevents the engines being heard.
3. There is no smoke nor glare from the fires to cause its detection.
4. The boat and crew, being under water, are protected from the fire of machine guns and rifles.
5. It is enabled to approach the enemy near enough to make effective even an uncontrollable fish torpedo.
6. It can be used with safety as a reconnoitring or despatch-boat.
7. It can examine the faults in the lines of submarine mines, and replace mines exploded in action. Abroad, the Nordenfeldt boat has awakened the most interest, and here the American submarine monitor holds the first place.
The form of the Nordenfeldt boat is that of a cigar or of an elongated cylinder tapering away to a fine point at each end. The outer case, built of stout steel, is calculated in its construction to resist such a pressure as would enable the boat to descend even beyond a depth of fifty feet, although that is set as the maximum for its diving operations. The cigar shape does not at first sight commend itself, even in the eyes of nautical men, on account of its supposed tendency towards a rolling motion. The experience, however, gained with the boat exhibited for the benefit of naval experts at Carlscrona, in September, 1885, has shown that very good sea-going qualities can be developed in a craft built upon such lines; for this small vessel has weathered more than one gale in the Baltic, to say nothing of the severe storm it encountered at the entrance to the Kattegat when proceeding from Gottenburg to Copenhagen for the experimental trials.
This quality results from the fact that each end of the boat forms a tank, which is filled with water, and as there is no extra buoyancy in those directions, and consequently no tendency to lift at those parts as with an ordinary vessel in a sea-way, the vessel rises and falls bodily instead of pitching. It has been found that by going at a moderate speed and taking the seas a point or so on the bows the boat makes very good weather, as the waves, breaking on the snout, sweep over the fore part and expend their force before any portion of them can reach the central section.
Steam, which is employed as motive power, is perfectly trustworthy as an agent. There is nothing about its action, or the appliances connected with it, that is beyond the grasp of an ordinary engineer, whereas such can hardly be said as yet in respect either to electricity or the other agencies by which inventors have sought to obtain motion. The difficulty, however, has always been how to retainsteam pressure for any great length of time without carrying on combustion. This in the Nordenfeldt boat is secured in the following ingenious manner: A large reservoir or hot-water cistern (marked Q in the plate) is placed in the fore part of the boat, in communication with the boiler. The steam from the latter passes through a number of tubes in the reservoir N, thus raising the temperature of its contents until the pressure stands at the same degree in both. While the boat is at the surface, the maximum pressure once attained, as long as combustion is carried on, supplies quite enough steam both for driving the engines at full speed and for maintaining the contents of the cistern in the proper superheated condition. When the boat is submerged and the furnace doors are closed combustion ceases, and the steam given off by the hot-water in the boiler and cistern is sufficient to keep the engines going for several hours.
BlueprintsLONGITUDINAL PLANS OF NORDENFELDT BOAT.
LONGITUDINAL PLANS OF NORDENFELDT BOAT.
Submersion to the various depths required is secured by the motion of the vertically acting screws, S S, driven by small three-cylinder engines. The boat is so ballasted as always to have spare buoyancy, and while a few revolutions of the screws will send her under water, the arrest of their motion is all that is required to bring her to the surface again. In this arrangement, as even the non-technical reader will readily understand, there is a greatelement of safety, the rising motion being entirely independent of any machinery which might refuse to act at the required moment. Another advantage is also gained in the ease with which the horizontal position is maintained by regulating the speed of the screws. To assist in keeping this position there is a horizontal rudder or fin, R, at the bows, which, by a very ingenious arrangement of a plumb weight with other mechanism in connection with the steering tower, works both automatically and by hand. The torpedoes are carried on the outside of the boat, as shown at F. They are Swartzkoph or Whitehead, as the case may be, and are released by electrical action under the control of the captain, standing on the platform at P. C is a cupola of stout glass by which a view is obtained occasionally when the boat is running submerged.
Construction Details.—The following are the dimensions of the Turkish boat: length 100 feet, beam 12 feet, displacement 150 tons, speed 12 knots, and coal endurance sufficient for travelling 900 miles. The engines (E) are of the ordinary inverted compound surface-condensing type, with two cylinders, and with 100 pound pressure indicate 250 horse-power. The circulating and air pumps being actuated by a separate cylinder, the main engine is left free to work or not, while a vacuum is always maintained to assist the various other engines with which the boat is fitted. In this respect it should be mentioned that all the engines are specially designed with such valve arrangements as will make the utmost use of the vacuum, it having been found that while the boat is running beneath the surface as much power can be developed below the atmospheric line as above it.
The boiler, B, is of the ordinary marine return-tube type, with two furnaces, and the heating surface is about seven hundred and fifty square feet. The tanks at each end of the boat contain about fifteen tons each, and there is a third of seven tons capacity at the bottom of the central compartment for regulating buoyancy. The coal is stored around the hot-water cistern as well as at the sides of the boiler and over the central ballast tank.
Three men and the captain can efficiently work this boat, although she may carry a crew of seven, who could remain in her for over seven hours beneath the water without experiencing any difficulty in respiration. No attempt is made as in some systems to purify the atmosphere by chemical means, as it is said to be quite unnecessary.
The Practical Management.—The boat is operated in the following manner: Steam having been raised to the required pressure, the funnel is lowered, and water is let into the ballast tanks to bring the craft down to the proper trim for action. In this condition the screws, S S, are sufficiently under water to obtain the requisite thrust. The boat may still proceed at the surface for some time if the enemy be distant, but the conning-tower should be closed, and the cupola hatch and the furnace doors shut, before there is any chance of discovery. The vertically acting screws being started, the boat is then submerged to the cupola, and continues approaching until, according to circumstances, it becomes prudent to disappear entirely. The direction is taken at the last moment, and maintained by compass until within striking distance, when a torpedo is released, and the boat immediately turns in another direction.
In May of this year there was launched at Barrow a Nordenfeldt boat 110 feet in length and 13 feet in diameter. The engines are capable of developing good power, and a speed of 12 knots on the surface was realized. The boat was tried on the Bosporus during July under government supervision, and as these were satisfactory, it seems likely that a number of similar vessels will be built next year for the Ottoman navy.
The original submarine monitorPeacemakeris well known through its trials on the Hudson River in 1886, but since then so many improvements have been made in the direction of increased efficiency that it is confidently expected the boat just designed will surpass its former successes. It must be understood in the beginning that its essential principle remains the same, all the important improvements being the outgrowth of the experience gained in previous experiments.
Broadly defined, the new craft has a midship section, which through its high centre of buoyancy and low centre of gravity gives great stability of form, or, to make it plain to the non-technical reader, it differs from the ordinary cigar and tortoise shaped boat in being more nearly like the section of a pear, the apex of which forms the keel. Its longitudinal section is not unlike the form generally used, though the lines are such as have been found to give the form of least resistance and the highest speed.
It is built of steel, with frames and spacings sufficient to stand the pressure of the lowest depth to which the boat is or can be expected to go. The old dimensions were: length 30 feet, depth 7 feet, and beam 8 feet. In order to obtain increased speed the present vessel will be 50 feet in length, 8 feet in beam, and 8 feet in depth, with a displacement of from thirty-five to forty tons, or an amount sufficient to carry the weights of the interchangeable boiler, of the sixty horse-power engine, and of the provisions and fuel necessary for a surface cruise of one week, and, when necessary, for a constantly submerged cruise of twelve hours.
The advantages claimed for the new boat are that she is so self-sustaining as not to need the assistance of any other vessel; that she is not an accessary, but has in herself all essentials of defence; and that she answers all possible necessities for submarine work of any kind whatever, whether in peace or war. The increased speed will, it is hoped, give her power to attack modern vessels under way. When submerged, as was proved last summer, she sent no bubbles of air to the surface, and had neither a wake nor a wash to militate against the possibilities of an absolutely secret attack. Besides these advantages, the boat is said to be a safe surface-cruising vessel, forming no target for the destructive action of an enemy’s attack, and at the same time having a capacity for disappearing so readily under water and avoiding the possibility of discovery that the enemy will be unable to tell when, where, or how the assault upon him may be made.
As in a former trial an accident proved the danger of an exposed conning-tower, the Submarine Monitor Company have provided a fin or guard for protecting the new helmsman’s lookout and companion-hatches. The waterlock appliance employed in the original boat has now an additional use in supplying a mode of egress and ingress, the opening being made telescopic, so as to permit surface runs in comparatively rough water. When submerged, the smoke-stackacts telescopically, and is closed with a water-tight valve. To avoid the necessity of divers going out of the boat when under water, there are various openings at places in the exterior skin to which rubber sleeves or arms, with a radius sufficient to cover almost all practical necessities, will be fitted. These apertures do not constitute planes of weakness or danger, because they are normally closed by stout water-tight dead-lights.
BlueprintTHE SUBMARINE MONITOR “PEACEMAKER.”
THE SUBMARINE MONITOR “PEACEMAKER.”
The Westinghouse engine is employed, as its construction prevents, by the packing used, any radiation of heat and the consequent elevation of temperation below. The air-tight doors and bulkheads work laterally, and the conning-dome is made of steel, with such apertures as will enable the helmsman to have, when on the surface, an all-round view, and when submerged, a sufficient light to let him in the daytime read, at a depth of thirty feet, the time by his watch.
Should the necessity arise, when submerged, the purity of the atmosphere below is preserved by passing the air through caustic soda, thus eliminating carbonic acid gas, and by reinforcing the loss of oxygen from tanks of compressed air. In the original experiments the boat was frequently submerged six hours at a time, and the crew of two men had no other air supplied than that which the boat carried down with her.
Besides these chemical means there are rubber tubes floated by buoys, with nozzles which protrude above the wash of the surface water. There is in each tube an automatic valve, which prevents water coming through the pipe at the time the air is being pumped in, and the depth below the surface to which outside air can be supplied is limited only by the length of the pipe.
In the plate, A represents a patented interchangeable boiler, in which either hydro-carbonate fuel or caustic soda can be used, in both cases steam being the motive power. The interior boiler for the use of the caustic soda is surrounded by a jacket, into which the steam exhausted from the engine can be used before it becomes so saturated as to create a back pressure on the engine, that is, for a period of twelve hours. When thislimit is attained, and the surface is reached, the soda can be blown off into an outer receptacle provided for the purpose, and then reheated and recharged. The hydro-carbon fuel is ordinary mineral oil, carried in tanks of sufficient capacity for a surface run of a week. It may be emphasized as an important fact that this method of exhausting into the jacket of the boiler avoids the possibility of any bubbles appearing on the surface, as was notably the case with the earlier Lay boats.
Before diving, the caustic soda, which has been already heated by the combustion of the oil to the proper degree, acts in place of the ordinary fuel, thus constituting a sort of perpetual motion, until the point of saturation is reached, and back pressure in the engine results.
The boat, when on the surface, is run with the oil fuel, but as soon as it becomes necessary to dive this fire is extinguished, the after-hatch is opened by unlocking the door of the bulkhead separating the after from the bulkheaded end of the vessel, and by a system of fans the hot air from the fire-room is driven outboard. Then the after telescopic hatch is reefed and secured, the soda is thrown from the receptacle where it has been heated into the jacket of the caustic-soda boiler, the fires are put out, the smoke-stack is taken in and securely fastened, and the machinist, leaving the engine-room, goes through the bulkhead door into the forward compartment, where he has complete control of the machinery and boiler by means of a duplicate set of gauges and levers. In case of an attack, the man detailed for operating the main torpedo is left in the after compartment, where he has access to that weapon and to the buoy, reel, and other mechanical appliances employed in its operation.
The helmsman, who controls the steering apparatus that governs the horizontal and perpendicular rudders, also operates with his feet the levers which are connected by links to the throttle that supplies steam to cylinders K K. These last function like the Westinghouse brake, and are connected with pistons to the cylinders J J. Through their agency water is at will admitted into or forced out of the larger receptacles, either from one end or from both ends simultaneously. The effect of discharging water is of course to increase the buoyancy of the vessel; and of admitting it, to decrease this quality so that without changing structural weights the boat is enabled to rise or sink perpendicularly, or, by admitting more water in one end than in the other, to take a downward or an upward course. Though this does away with the necessity of the horizontal rudder, it is kept as an additional resource for steering. In case of accident to the connecting pipes or machinery the vessel is supplied with water receptacles and hand-pumps, which are able to govern its submergence so that should all other mechanism break down the boat is so completely under the control of the operator that it can at all times be brought to the surface. As an additional safeguard, there is on the outside of the boat a quantity of ballast which can be readily detached by the arms or sleeves previously described, and so effectively that the reserve buoyancy thus gained will alone carry the boat to the surface.
In addition to the main torpedo and buoy resting in the cylindrical apertures aft, other torpedoes, connected by spans, are carried on deck. The method of their employment in attack is to go under the body of the vessel athwartship, andto liberate them. As they are fitted with magnets, they will, it is claimed, when freed, attach themselves to the bilges of the enemy’s vessel, while thePeacemakercan continue her cruise and let them act automatically, or, backing off to a distance greater than the depth of water in which she then is, safely explode them by conventional electrical appliances. With the increased speed of the present boat there are various methods of attacking vessels of war when under way, among them one which is somewhat similar to that described above.
ThePeacemaker, when under the body of the vessel athwartship, would liberate a buoy, B, that is connected with a torpedo, T, by a chain, the length of which depends upon the depth beneath the buoy the torpedo is desired to float. The steel tow-line to the torpedo is payed out from reel G to a sufficient length, and then by going ahead with the boat the torpedo is drawn close under the opposite side of vessel from buoy B. In this position the torpedo can be exploded by electricity.
If necessary, by liberating buoy B, while crossing the bow on the starboard side of the fore-foot of a vessel, the forward motion will draw the torpedo, T, close in to the opposite side; then, by a system of push-pins on the torpedo, the operator learns that it is in close contact and ready for explosion by electricity. Should the enemy’s vessel be at anchor the tide can be employed for the purpose of bringing the buoy on one side of the vessel while the torpedo is on the other.
The boat is supplied with the ordinary incandescent lights, or apparatus for lighting the interior for night attacks.
TORPEDOES.
America has contributed to modern warfare many of its most valuable inventions. In the decade of 1850-60 the steam frigates of theMerrimacclass revolutionized the naval constructions of the world, and became the models for the war-ships of the great maritime powers. In the same period our coast defences reached the high-water mark of modern development, and, soon to be crystallized, there were seething in the brains of American inventors ideas of guns, ships, and projectiles which made history. Though to-day our created contributions to quick peace through arrested or irresistible war are meagre, still many of the theories which make possible modern ordnance and ships are the fruits of American genius and industry.
Is the future to be as fertile in thought and deed? Are the destroyers of Ericsson, the dynamite safety shells of Hayes, the guns of Zalinski, the torpedoes of Howell, Sims, or Berdan, the turrets of Timby, the submarine monitors of Tuck, the gun-carriages of King or Buffington, the ordnance of Sicard, Benét—are these to prove that Yankee brain and brawn are potent yet for the mastery of the problem?
The country has no plainer duty than to foster by every care American ideas working in national ways of thought. It is rich, public sentiment is ripe and responsive, and Congress should encourage in peace the experiments which may make war impossible. In the question of ship armament and sea-coast fortifications notably, the value of torpedoes is now so generally recognized that thedefinite selection of some type has attained an importance which demands most careful consideration. All experts agree that they are vital, but there is not that consensus of opinion which within limits affirms exactly what should be done.
The Fortification Board in their report say: “It is not generally considered possible to bar the progress of an armored fleet by the mere fire of a battery; some obstructions sufficient to arrest the ships within effective range of the guns is necessary. The kind of obstruction now relied upon is the torpedo, in the form of a submarine mine, and, except in special cases, exploded by electric currents which are so managed that the operator on shore can either ignite the mine under the ship’s bottom, or allow the ship to explode it by contact. In deep channels the submarine mines are buoyant; in comparatively shallow waters they are placed upon the bottom—the object in both cases being to touch or nearly approach the hull of the vessel. Submarine mines are not accessaries to defence, but are essential features wherever they can be applied.”
The Senate Committee on Ordnance and War-ships reported: “Concerning another class of torpedoes, ‘fixed’ or ‘anchored’ or ‘planted,’ technically known as submarine mines, there is a great popular misapprehension. Their value is greatly overestimated. They require picked and trained men for their management, electrical apparatus for their discharge and for lighting up the approaches, stations on shore secure against sudden assault, a flanking fire of canister and case shot and of machine guns (themselves protected), light draught picket-boats, and the overshadowing protection of armored forts and heavy guns. None of these things can be extemporized. The submarine mine alone is of little use, and it must accompany, not precede, more costly and less easily prepared means of defence.”
There is, however, a more definite agreement as to the value of torpedo-boats. The Fortification Board declare: “Among the most important means of conducting an active defence of the coast is the torpedo-boat, which, although recently developed, has received the sanction of the nations of Europe, each one of which now possesses a large number of these vessels. Their use will be quite general. First, in disturbing blockades, and preventing these from being made close, as no fleet would like to lie overnight within striking distance of a station of these boats; secondly, in attacking an enemy’s ship enveloped in fog or smoke; thirdly, in relieving a vessel pursued by the enemy; and fourthly, in defending the mines by night and by day against attempts at counter-mining, and in many other ways not necessary to recapitulate.” Impressed with the utility of this mode of defence, the Board recommended the construction of one hundred and fifty of these boats, and the organization of a special corps of officers and men from the navy trained to their use.
In England, Commander Gallwey does not hesitate to say that the torpedo-boat is for harbor defence so superior to the submarine mine that he would not be surprised if before long it superseded the latter altogether. In France, Charmes insists that an armored vessel will run the most serious risk if a torpedo-boat is allowed to approach unobserved to within one thousand to fifteen hundred feet; that the torpedo will surely triumph over the iron-clad, and that armor has been vanquished, not by the gun, but by the torpedo.
A NAVAL RESERVE.
Among the problems to be solved by an efficient naval administration there is none more difficult or of greater importance than the formation of reserves of seamen. Our late war exposed the nation’s weakness in sailors. At the beginning of hostilities the fleet, on paper, consisted of forty-two ships of all classes, mainly sailing-vessels, with a few paddle-wheel steamers, and less than ten screw-vessels with auxiliary power. Itspersonnelcomprised seven thousand of all grades. And yet, to blockade a coast of over three thousand miles in length, the Secretary of the Navy had at his disposal but three effective vessels, and a reserve of only two hundred seamen on all the receiving-ships and at all the naval stations.
As late as the first of July, 1863, there were not men enough to carry out efficiently the work imposed upon the navy, and of the thirty-four thousand blue-jackets twenty-five thousand were landsmen. Secretary Welles, at the end of the same year, complained that there were no reserve seamen, that the supply for immediate and imperative duties was so inadequate that one of the largest and fastest steamers destined for important foreign service had been detained for months in consequence of the need of a crew, and that many other vessels were very much short of their complements. The cause of this was want of foresight, of prudence, of national common-sense even. We did not lack the material from which crews could have been drawn, for in 1860 over seventy-five thousand men sailed in the American merchant marine, fifty thousand of whom, under any system of enrolment suited to our national instincts and prejudices, would, before the end of 1861, have been available for duty on shipboard.
In peace there had been no organization, so when war came we were almost helpless, and as late as the end of 1863 not twenty per cent. of the men who should have been ready for service were in government ships. Letdoctrinairestheorize as they may, this was not the fault of our maritime class, for thousands of sailors and fishermen who had already entered the army were by force of law denied the opportunity either of enlisting in, or of being transferred to, the navy. In addition, the operation of the draft was made detrimental to the naval interests of the country, for it violated the Act of May, 1792, which exempts from military duty all mariners actually employed in the sea service of any citizen or merchant within the United States. Furthermore, the government unjustly discriminated against the seaboard towns, for not only was the seafaring class, which is fostered and cherished by all maritime governments, withdrawn from the element to which it has been accustomed, but in addition sailors actually afloat were taken from their ships and compelled, under the penalty of law, to enter the land service. It was not until 1864 that Congress finally enacted the law which enabled seamen serving as soldiers to be drafted into the navy.
How different would have been the state of affairs had there existed in 1861 some system of government administration as to the creation of naval reserves, or, more far-reaching still, had we been free from that illogical distrust which possessed the whole country! The fear of too much centralization was the stock in trade of professional patriots, and the people, hampered by traditions whichhad come down to us from our English ancestors, saw in any attempt towards efficient war preparation in times of peace all the dangers they had been taught to believe existed in standing armies.
England acted more wisely, for she had been taught a grim lesson by her adversities, and without fear we might have profited by her example. In the history of the Peninsula war, Napier, after picturing the horrors of the fearful April night when Badajoz was stormed, asked, bitterly,
“And why was all this striving in blood against insurmountable difficulties? Why were men sent thus to slaughter when the application of a just science would have rendered the operations comparatively easy?“Because the English ministers, so ready to plunge into war, were quite ignorant of its exercises; because the English people are warlike without being military, and, under the pretence of maintaining liberty which they do not possess, oppose in peace all useful martial establishments. In the beginning of each war England had to seek in blood for the knowledge necessary to insure success.”
“And why was all this striving in blood against insurmountable difficulties? Why were men sent thus to slaughter when the application of a just science would have rendered the operations comparatively easy?
“Because the English ministers, so ready to plunge into war, were quite ignorant of its exercises; because the English people are warlike without being military, and, under the pretence of maintaining liberty which they do not possess, oppose in peace all useful martial establishments. In the beginning of each war England had to seek in blood for the knowledge necessary to insure success.”
Equally has this always been the attitude of the American people towards every attempt made in peace to prepare for war. Besides this national distrust, prejudices had to be overcome which have existed both in the navy and the merchant marine. Our naval officers have never made any determined effort to create a reserve, either because they have not fully grasped the correlation and interdependence of the navy and the merchant marine, or because they have doubted the wisdom of spending upon an outside issue appropriations which, given to the navy, would produce a more immediate and tangible result. But from both points of view they are wrong, “for a navy unsupported by a merchant marine is a hot-house plant which may produce great results for a while, but cannot endure the strain of a long protracted campaign.” From the merchant marine thepersonnelof the navy in war must come, and it is a fallacy to believe that by a small addition to our ordinary naval resources we would be able to cope with the navies of other maritime powers, or that in a long war an efficient and numerous reserve is not of greater importance than a few more seamen permanently maintained in the navy during peace.
To the merchants and ship-owners the question is one of vital importance. The earliest and most disastrous consequence of war will fall upon the shipping interest. Under any system of defence the necessities of the navy must withdraw seamen from the merchant service and raise the rate of wages. If, then, by timely precautions during peace, we can diminish the probability that war can occur at all; if we are ready upon the outbreak of war to show that our homeward-bound ships are safe; if we can abolish or modify the risk that the employment of seamen would be abruptly suspended by embargo or interfered with by impressment or draft; if we can attach the sailor to his country, and prevent him from seeking employment under other flags, surely the owners of our ships and merchants will reap the greatest advantage. Abroad the importance of the subject has been fully recognized. France, under a system which has existed for over two hundred and fifty years, maintains a reserve of 172,000 men, who are between the ages of eighteen and fifty; 65,000 of these are between the ages oftwenty and twenty-six, 15,000 are usually kept afloat, and 6000 more are quartered on shore. Germany has 15,000, and England nearly the same number.
Notwithstanding the decadence of our shipping interest we have a large force from which to draw. The maritime population of this country numbers over 350,000, of whom 180,000 are available for the fleet. This number of course includes all those in any way connected with sea industries, and embraces coasters, fishermen, whalers, yachtsmen, boatmen, and all workmen in ship-building yards and equipment shops and stores.
To man our ships in time of war three means are open: voluntary enlistment, draft or impressment, or employment of men enrolled in a naval reserve. It would be unreasonable to depend altogether upon the loyal and unselfish patriotism of necessitous men serving before the mast, and there is a chance that mere enthusiasm would not induce a seaman to join the navy if employment was being offered elsewhere at increasing rates of pay. Impressment under any name is unpopular. In its common form it is illegal, and the draft is ever a last resort and always a dangerous measure. Nothing, then, remains as a certainty but to turn towards the naval reserve as the best means of manning our fleet. In time of war not only would the men enrolled come forward willingly and be immediately available, but deserters would have the machinery of the law put in motion for their apprehension, and popular feeling would be as earnest in support of their arrest as it would be opposed to all attempts which enforced the arbitrary powers of draft or impressment.
No system exists abroad entirely suited to our necessities and our national instincts; but, generally speaking, that adopted in England comes nearest to what we should employ. Naturally our lake sailors, coasters, fishermen, and yachtsmen would form the main body of the reserve. These should be enrolled, divided into classes, be given each year a certain fixed sum of pay, with an increase for each day’s drill, and at stated times they should be embarked for great gun practice at sea, so they might learn something of man-of-war routine and discipline. The officers could be drawn from the merchant marine, from the graduates of the school-ships, and from former officers of the regular and volunteer services who are now in civil life.
FORCED DRAFT.
The subject of forced draft is of great importance, and, as a corollary of high-speed development, is being studied with keen interest. There are wide differences of opinion not only as to the proper systems, but even as to the value of the principle. The literature as yet is rather meagre, but an excellent compilation of existing material will be found in the latest publication of the Naval Intelligence Office.
“A forced draft in the furnaces,” explains theMarine Engineerof September, 1887, “can be generated in two ways: first, by exhausting the uptakes and funnels of the products of combustion, when a greater flow of air will necessarily take place through the fire-bars; and secondly, by increasing the pressure of the air in the furnaces beyond that of the atmosphere. The steam-blast in marine boilers is well known to engineers as a means of quickly getting up the steam afterits pressure has dropped; but the locomotives on our railways afford a very good illustration of how boilers may be continuously worked under forced combustion through a jet of steam exhausting the smoke-box and funnel of the products of combustion. This system of creating a draft involves a very large expenditure of steam and water, and as it is asine qua nonin these days of high pressure that only fresh water should be used in boilers, and also as only a limited supply of this element can be carried in a ship, it follows that the plan of inducing a forced draft by means of a steam jet in the funnel cannot be well adopted in marine boilers.
“Mr. Martin, the inventor of the well-known furnace doors, substitutes a fan in the uptake for the steam jet, and so arranges his funnel that in the event of the forced draft not being required the gases of combustion arising from natural draft will not be impeded in their exit to the atmosphere. He claims for his invention that it does away with all necessity for closing in the stoke-holds or furnaces, and that in war-ships funnels could be dispensed with, as the gases and smoke could be discharged anywhere from the fans. He also claims that by his plan of producing a draft the boiler-tubes become much more efficient as heating surfaces, and that the ends of the tubes in the fire-box are not so liable to be burned away, and that therefore there will be less chance of the boiler leaking round the tubes. There appears to be some grounds for these latter assumptions, for it is a well-known fact that the tubes of locomotive boilers, which are worked, as we have seen, on the exhaust principle, do very much more work than those of marine boilers before they are ferruled or rolled. It can also be shown by a very simple experiment that when the gases are sucked or drawn through the tubes the flame extends a much greater distance along the tube than when the gases are driven through the tubes. In this latter case the flame impinges on the tube-plates before separating into tongues and entering the tubes; but when sucked through the tongues of flame commence at some little distance from the plate before penetrating the tubes, and the ends are not therefore burned as when the flame impinges directly on them. It may be urged, however, against Martin’s system that owing to the greatly increased volume of the products of combustion due to their temperature, fans of from three to four times the size of those used in other systems are required; also, that the uptakes have to be made larger and heavier to take in the fans; and lastly, that the fans themselves are likely to be quickly rendered inefficient through working in a temperature of at least a thousand degrees. These objections prove so formidable that up till the present time Martin’s plan of creating a forced draft has made little or no headway.
“The other plan for creating an artificial draft in marine furnaces is to force air into them by means of fans. This is done either by closing in the whole of the stoke-hold and filling it with air of a pressure greater than that of the atmosphere, or by pumping the air direct into the furnace. This latter is the usual practice in the mercantile marine, where economy of fuel is sought after. Mr. Howden seeks, by first heating the air, and then forcing it by means of fans into the furnaces and ash-pits, to insure a very rapid and complete combustion of the coal. His plan has been carried out in the Atlantic linerOhioquite recently, and the results as published lead one to expect that with a little more progress in the direction inwhich he is working our ships will be driven across the Atlantic without the expenditure of any fuel whatever. The fact of heating the air to a temperature of two hundred degrees before it enters the furnace cannot go very far in affecting either the rapidity or the completeness of the combustion of the fuel, and it certainly cannot affect the economy. Where the fire-grate area is small compared with the total heating surface, good evaporative results are likely to be obtained; and in theOhiothe fire-grate area was certainly smaller than is usual for the same sized boilers fitted with forced draft. The trip of theOhioto America has given somewhat different results to those of the official trials, and it is a question whether any saving in weight, either in the apparatus required to produce forced draft under this system, or in the economy of fuel to be derived from it, has been obtained more than exists in the system of closed stoke-holds.
“The only plan that seems to hold its own is the closed stoke-hold system, and the results that have been obtained with it in the navy are so satisfactory that Messrs. J. & G. Thomson are about to adopt it in the two large Inman liners they are now building; and also several other firms are about to introduce it in preference to all other plans for increasing the efficiency of their boilers and promoting greater economy. In the Royal Navy space and weight are of such vital importance that the boilers have to be constructed on principles the very reverse of those which exist in boilers specially designed for high evaporative work per pound of fuel; and it is not, therefore, to be wondered at that the consumption of fuel per indicated horse-power has not been reduced since the introduction of forced draft; but, on the other hand, the capabilities of the boilers have been expanded far beyond the expectations of a few years ago. In the mercantile marine there is no reason whatever why the system of closed stoke-holds for creating a forced draft should not combine economy with greater efficiency in the boilers.”
These conclusions are not universally accepted, as will be seen in the following extract from the article contributed by Assistant Engineer R. S. Griffin, United States Navy, to the Naval Intelligence Office publication mentioned at the beginning of this subject.
“The forced-draft trials of theArcherclass,” he writes, “go far towards sustaining the objections raised by Mr. Howden against the closed stoke-hold system. The trials of theArcher,Brisk, andCossackhad to be discontinued on several occasions, owing to leakage of the boiler-tubes; and when it is remembered that these trials are for only four hours, and that no provision is made for hoisting ashes, it becomes a question of serious consideration whether the maintenance of this high power for such a short period brings with it advantages at all comparable with the continued development of a reasonably high power with an economical expenditure of coal, such as is possible with the closed ash-pit system.
“A number of steamers have been fitted with Howden’s system during the past year, among others theCeltic, of the White Star Line, and theOhio, of the International Navigation Company. One of the latest steamers fitted with this system is theCity of Venice, whose engines were converted from compound to quadruple expansion. Her boilers were designed to develop 1800 indicated horse-power with eighty square feet of grate, but on trial she could only work off 1300 indicated horse-power, owing to some derangement of the valves. She was afterwardstried with half the grate surface in use, when it was demonstrated that there would be no difficulty in developing the power so far as the boilers were concerned. Unfortunately, no data as to weight of boilers, space, or heating surface are obtainable.
“In 1886 theAlliancewas supplied with new boilers, fitted with a system of forced draft designed by the Bureau of Steam Engineering. It was originally the intention of the Department to put six boilers in this vessel, as in theEnterpriseandNipsic, but with the introduction of the forced-draft system, which was purely experimental, this number was reduced to four, having a total grate surface of 128 square feet. The boilers were designed to burn anthracite coal with natural draft, and were of course unsuited to the requirements of forced draft, the ratio of heating to grate surface being only 25.6 to 1, and the water surface and steam space being small. The maximum indicated horse-power developed on trial was 1022, but any attempt to run at this or at increased power for any length of time was attended with so much priming of the boilers that the trial had to be discontinued. Alterations were made in the boilers to prevent the priming, but no continuous trial was had previously to the sailing of theAlliance. The results obtained on a measured base were, however, sufficient to demonstrate the practicability of the system, and to show that a higher power could be maintained with the four boilers at forced draft than with the original eight boilers at natural draft.
“The practical working of the system at sea presents no difficulty, as a recent run of theAlliancehas demonstrated. On a continuous run of ten hours, using only two boilers with sixty square feet of grate (the grate surface of each boiler having been reduced to thirty), the mean indicated horse-power was 668 and the maximum 744, being respectively 11.1 and 12.4 indicated horse-power per square foot of grate. There was an entire absence of priming, and no difficulty was experienced in operating the forced-draft apparatus, the length of the trial having been determined by the arrival of the vessel in port. The coal burned was Welsh, of fair quality, the consumption being 29.9 pounds per square foot of grate.
“The efficiency of the system may be judged by the results obtained from an experimental boiler at the Washington Navy-yard. The boiler was of the marine locomotive type, and had a ratio of heating to grate surface of 32.73 to 1, with a water space of 245 and a steam space of 163 cubic feet. The coal burned was ordinary Cumberland Valley bituminous, and the evaporation, when burning as much as forty pounds per square foot of grate, was 6.61, while with 37.5 it was 7.24, and this with a moderate air pressure—1.5 inches in ash-pit and one inch on furnace door.”
It is unfair to attempt the explanation of this system without accompanying drawings, but it may be stated that the air, drawn by fan-blowers from the heated portion of the fire-room, is forced through a passage into the ash-pit and furnace, a portion of the current being directed by an interposed plate through the holes in the furnace frame. By the agency of a double row of holes the greater portion of the air which enters the furnace passes around the frame, thence through other apertures to the space between the furnace door and lining, and finally to the furnace through the space between the lining and furnace frame. The supply of air when firing or hauling ashes is shut off by a damper.