Chapter 7

Yet all these powers, whether acting at a small or great distance, certainly act within definite distances, which are well ascertained by nature, so that there is a limit depending either on the mass or quantity of the bodies, the vigor or faintness of the powers, or the favorable or impeding nature of the medium, all of which should be taken intoaccount and observed. We must also note the boundaries of violent motions, such as missiles, projectiles, wheels and the like, since they are also manifestly confined to certain limits.

Some motions and virtues are to be found of a directly contrary nature to these, which act in contact but not at a distance; namely, such as operate at a distance and not in contact, and again act with less force at a less distance, and the reverse. Sight, for instance, is not easily effective in contact, but requires a medium and distance; although I remember having heard from a person deserving of credit, that in being cured of a cataract (which was done by putting a small silver needle within the first coat of the eye, to remove the thin pellicle of the cataract, and force it into a corner of the eye), he had distinctly seen the needle moving across the pupil. Still, though this may be true, it is clear that large bodies cannot be seen well or distinctly, unless at the vertex of a cone, where the rays from the object meet at some distance from the eye. In old persons the eye sees better if the object be moved a little further, and not nearer. Again, it is certain that in projectiles the impact is not so violent at too short a distance as a little afterward.[145]Such are the observations to be made on the measure of motions as regards distance.

There is another measure of motion in space which mustnot be passed over, not relating to progressive but spherical motion—that is, the expansion of bodies into a greater, or their contraction into a lesser sphere. For in our measure of this motion we must inquire what degree of compression or extension bodies easily and readily admit of, according to their nature, and at what point they begin to resist it, so as at last to bear it no further—as when an inflated bladder is compressed, it allows a certain compression of the air, but if this be increased, the air does not suffer it, and the bladder is burst.

We have proved this by a more delicate experiment. We took a metal bell, of a light and thin sort, such as is used for salt-cellars, and immersed it in a basin of water, so as to carry the air contained in its interior down with it to the bottom of the basin. We had first, however, placed a small globe at the bottom of the basin, over which we placed the bell. The result was, that if the globe were small compared with the interior of the bell, the air would contract itself, and be compressed without being forced out, but if it were too large for the air readily to yield to it, the latter became impatient of the pressure, raised the bell partly up, and ascended in bubbles.

To prove, also, the extension (as well as the compression) which air admits of, we adopted the following method:—We took a glass egg, with a small hole at one end; we drew out the air by violent suction at this hole, and then closed the hole with the finger, immersed the egg in water, and then removed the finger. The air being constrained by the effort made in suction, and dilated beyond its natural state, and therefore striving to recover and contract itself (so that if the egg had not been immersed in water, it would have drawn in the air with a hissing sound), now drew ina sufficient quantity of water to allow the air to recover its former dimensions.[146]

It is well ascertained that rare bodies (such as air) admit of considerable contraction, as has been before observed; but tangible bodies (such as water) admit of it much less readily, and to a less extent. We investigated the latter point by the following experiment:

We had a leaden globe made, capable of containing about two pints, wine measure, and of tolerable thickness, so as to support considerable pressure. We poured water into it through an aperture, which we afterward closed with melted lead, as soon as the globe was filled with water, so that the whole became perfectly solid. We next flattened the two opposite sides with a heavy hammer, which necessarily caused the water to occupy a less space, since the sphere is the solid of greatest content; and when hammering failed from the resistance of the water, we made use of a mill or press, till at last the water, refusing to submit to a greater pressure, exuded like a fine dew through the solid lead. We then computed the extent to which the original space had been reduced, and concluded that water admitted such a degree of compression when constrained by great violence.

The more solid, dry or compact bodies, such as stones, wood and metals, admit of much less, and indeed scarcely any perceptible compression or expansion, but escape by breaking, slipping forward, or other efforts; as appears in bending wood, or steel for watch-springs, in projectiles, hammering and many other motions, all of which, togetherwith their degrees, are to be observed and examined in the investigation of nature, either to a certainty, or by estimation, or comparison, as opportunity permits.

XLVI. In the twenty-second rank of prerogative instances we will place the instances of the course, which we are also wont to call water instances, borrowing our expression from the water hour-glasses employed by the ancients instead of those with sand. They are such as measure nature by the moments of time, as the last instances do by the degrees of space. For all motion or natural action takes place in time, more or less rapidly, but still in determined moments well ascertained by nature. Even those actions which appear to take effect suddenly, and in the twinkling of an eye (as we express it), are found to admit of greater or less rapidity.

In the first place, then, we see that the return of the heavenly bodies to the same place takes place in regular times, as does the flood and ebb of the sea. The descent of heavy bodies toward the earth, and the ascent of light bodies toward the heavenly sphere, take place in definite times,[147]according to the nature of the body, and of the medium through which it moves. The sailing of ships, the motions of animals, the transmission of projectiles, alltake place in times the sums of which can be computed. With regard to heat, we see that boys in winter bathe their hands in the flame without being burned; and conjurers, by quick and regular movements, overturn vessels filled with wine or water, and replace them without spilling the liquid, with several similar instances. The compression, expansion and eruption of several bodies, take place more or less rapidly, according to the nature of the body and its motion, but still in definite moments.

In the explosion of several cannon at once (which are sometimes heard at the distance of thirty miles), the sound of those nearest to the spot is heard before that of the most distant. Even in sight (whose action is most rapid), it is clear that a definite time is necessary for its exertion, which is proved by certain objects being invisible from the velocity of their motion, such as a musket-ball; for the flight of the ball is too swift to allow an impression of its figure to be conveyed to the sight.

This last instance, and others of a like nature, have sometimes excited in us a most marvellous doubt, no less than whether the image of the sky and stars is perceived as at the actual moment of its existence, or rather a little after, and whether there is not (with regard to the visible appearance of the heavenly bodies) a true and apparent time, as well as a true and apparent place, which is observed by astronomers in parallaxes. It appeared so incredible to us, that the images or radiations of heavenly bodies could suddenly be conveyed through such immense spaces to the sight, and it seemed that they ought rather to be transmitted in a definite time.[148]That doubt, however(as far as regards any great difference between the true and apparent time), was subsequently completely set at rest, when we considered the infinite loss and diminution of size as regards the real and apparent magnitude of a star, occasioned by its distance, and at the same time observed at how great a distance (at least sixty miles) bodies which are merely white can be suddenly seen by us. For there is no doubt, that the light of the heavenly bodies not only far surpasses the vivid appearance of white, but even the light of any flame (with which we are acquainted) in the vigor of its radiation. The immense velocity of the bodies themselves, which is perceived in their diurnal motion, and has so astonished thinking men, that they have been more ready to believe in the motion of the earth, renders the motion of radiation from them (marvellous as it is in its rapidity) more worthy of belief. That which has weighed most with us, however, is, that if there were any considerable interval of time between the reality and the appearance, the images would often be interrupted and confused by clouds formed in the meantime, and similar disturbances of the medium. Let this suffice with regard to the simple measures of time.

It is not merely the absolute, but still more the relative measure of motions and actions which must be inquired into, for this latter is of great use and application. We perceive that the flame of firearms is seen sooner than the sound is heard, although the ball must have struck the air before the flame, which was behind it, could escape: the reason of which is, that light moves with greater velocitythan sound. We perceive, also, that visible images are received by the sight with greater rapidity than they are dismissed, and for this reason, a violin string touched with the finger appears double or triple, because the new image is received before the former one is dismissed. Hence, also, rings when spinning appear globular, and a lighted torch, borne rapidly along at night, appears to have a tail. Upon the principle of the inequality of motion, also, Galileo attempted an explanation of the flood and ebb of the sea, supposing the earth to move rapidly, and the water slowly, by which means the water, after accumulating, would at intervals fall back, as is shown in a vessel of water made to move rapidly. He has, however, imagined this on data which cannot be granted (namely, the earth’s motion), and besides, does not satisfactorily account for the tide taking place every six hours.

An example of our present point (the relative measure of motion), and, at the same time, of its remarkable use of which we have spoken, is conspicuous in mines filled with gunpowder, where immense weights of earth, buildings, and the like, are overthrown and prostrated by a small quantity of powder; the reason of which is decidedly this, that the motion of the expansion of the gunpowder is much more rapid than that of gravity,[149]which would resist it, so that the former has terminated before the latter has commenced. Hence, also, in missiles, a strong blow will not carry them so far as a sharp and rapid one. Nor could a small portion of animal spirit in animals, especially in suchvast bodies as those of the whale and elephant, have ever bent or directed such a mass of body, were it not owing to the velocity of the former, and the slowness of the latter in resisting its motion.

In short, this point is one of the principal foundations of the magic experiments (of which we shall presently speak), where a small mass of matter overcomes and regulates a much larger, if there but be an anticipation of motion, by the velocity of one before the other is prepared to act.

Finally, the point of the first and last should be observed in all natural actions. Thus, in an infusion of rhubarb the purgative property is first extracted, and then the astringent; we have experienced something of the same kind in steeping violets in vinegar, which first extracts the sweet and delicate odor of the flower, and then the more earthy part, which disturbs the perfume; so that if the violets be steeped a whole day, a much fainter perfume is extracted than if they were steeped for a quarter of an hour only, and then taken out; and since the odoriferous spirit in the violet is not abundant, let other and fresh violets be steeped in the vinegar every quarter of an hour, as many as six times, when the infusion becomes so strengthened, that although the violets have not altogether remained there for more than one hour and a half, there remains a most pleasing perfume, not inferior to the flower itself, for a whole year. It must be observed, however, that the perfume does not acquire its full strength till about a month after the infusion. In the distillation of aromatic plants macerated in spirits of wine, it is well known that an aqueous and useless phlegm rises first, then water containing more of the spirit, and, lastly, water containing more of thearoma; and many observations of the like kind, well worthy of notice, are to be made in distillations. But let these suffice as examples.[150]

XLVII. In the twenty-third rank of prerogative instances we will place instances of quantity, which we are also wont to call the doses of nature (borrowing a word from medicine). They are such as measure the powers by the quantity of bodies, and point out the effect of the quantity in the degree of power. And in the first place, some powers only subsist in the universal quantity, or such as bears a relation to the confirmation and fabric of the universe. Thus the earth is fixed, its parts fall. The waters in the sea flow and ebb, but not in the rivers, except by the admission of the sea. Then, again, almost all particular powers act according to the greater or less quantity of the body. Large masses of water are not easily rendered foul, small are. New wine and beer become ripe and drinkable in small skins much more readily than in large casks. If a herb be placed in a considerable quantity of liquid, infusion takes place rather than impregnation; if in less, the reverse. A bath, therefore, and a light sprinkling, produce different effects on the human body. Light dew, again, never falls, but is dissipated and incorporated with the air; thus we see that in breathing on gems, the slight quantity of moisture, like a small cloud in the air, is immediately dissolved. Again, a piece of the same magnet does not attract so much iron as the whole magnet did. There are some powers where the smallness of the quantity is of more avail; as in boring, a sharp point pierces more readily than a blunt one; the diamond, when pointed, makes an impression on glass, and the like.

Here, too, we must not rest contented with a vague result, but inquire into the exact proportion of quantity requisite for a particular exertion of power; for one would be apt to suppose that the power bears an exact proportionto the quantity; that if a leaden bullet of one ounce, for instance, would fall in a given time, one of two ounces ought to fall twice as rapidly, which is most erroneous. Nor does the same ratio prevail in every kind of power, their difference being considerable. The measure, therefore, must be determined by experiment, and not by probability or conjecture.

Lastly, we must in all our investigations of nature observe what quantity, or dose, of the body is requisite for a given effect, and must at the same time be guarded against estimating it at too much or too little.

XLVIII.In the twenty-fourth rank of prerogative instances we will place wrestling instances, which we are also wont to call instances of predominance. They are such as point out the predominance and submission of powers compared with each other, and which of them is the more energetic and superior, or more weak and inferior. For the motions and effects of bodies are compounded, decomposed, and combined, no less than the bodies themselves. We will exhibit, therefore, the principal kinds of motions or active powers, in order that their comparative strength, and thence a demonstration and definition of the instances in question, may be rendered more clear.

Let the first motion be that of the resistance of matter, which exists in every particle, and completely prevents its annihilation; so that no conflagration, weight, pressure, violence, or length of time can reduce even the smallest portion of matter to nothing, or prevent it from being something, and occupying some space, and delivering itself (whatever straits it be put to), by changing its form or place, or, if that be impossible, remaining as it is; nor can it ever happen that it should either be nothing or nowhere.This motion is designated by the schools (which generally name and define everything by its effects and inconveniences rather than by its inherent cause) by the axiom, that two bodies cannot exist in the same place, or they call it a motion to prevent the penetration of dimensions. It is useless to give examples of this motion, since it exists in every body.

Let the second motion be that which we term the motion of connection, by which bodies do not allow themselves to be separated at any point from the contact of another body, delighting, as it were, in the mutual connection and contact. This is called by the schools a motion to prevent a vacuum. It takes place when water is drawn up by suction or a syringe, the flesh by cupping, or when the water remains without escaping from perforated jars, unless the mouth be opened to admit the air, and innumerable instances of a like nature.

Let the third be that which we term the motion of liberty, by which bodies strive to deliver themselves from any unnatural pressure or tension, and to restore themselves to the dimensions suited to their mass; and of which, also, there are innumerable examples. Thus, we have examples of their escaping from pressure, in the water in swimming, in the air in flying, in the water again in rowing, and in the air in the undulation of the winds, and in springs of watches. An exact instance of the motion of compressed air is seen in children’s popguns, which they make by scooping out elder-branches or some such matter, and forcing in a piece of some pulpy root or the like, at each end; then they force the root or other pellet with a ramrod to the opposite end, from which the lower pellet is emitted and projected with a report, and that before it is touchedby the other piece of root or pellet, or by the ramrod. We have examples of their escape from tension, in the motion of the air that remains in glass eggs after suction, in strings, leather, and cloth, which recoil after tension, unless it be long continued. The schools define this by the term of motion from the form of the element; injudiciously enough, since this motion is to be found not only in air, water, or fire, but in every species of solid, as wood, iron, lead, cloth, parchment, etc., each of which has its own proper size, and is with difficulty stretched to any other. Since, however, this motion of liberty is the most obvious of all, and to be seen in an infinite number of cases, it will be as well to distinguish it correctly and clearly; for some most carelessly confound this with the two others of resistance and connection; namely, the freedom from pressure with the former, and that from tension with the latter, as if bodies when compressed yielded or expanded to prevent a penetration of dimensions, and when stretched rebounded and contracted themselves to prevent a vacuum. But if the air, when compressed, could be brought to the density of water, or wood to that of stone, there would be no need of any penetration of dimensions, and yet the compression would be much greater than they actually admit of. So if water could be expanded till it became as rare as air, or stone as rare as wood, there would be no need of a vacuum, and yet the expansion would be much greater than they actually admit of.

We do not, therefore, arrive at a penetration of dimensions or a vacuum before the extremes of condensation and rarefaction, while the motion we speak of stops and exerts itself much within them, and is nothing more than a desire of bodies to preserve their specific density (or,if it be preferred, their form), and not to desert them suddenly, but only to change by degrees, and of their own accord. It is, however, much more necessary to intimate to mankind (because many other points depend upon this), that the violent motion which we call mechanical, and Democritus (who, in explaining his primary motions, is to be ranked even below the middling class of philosophers) termed the motion of a blow, is nothing else than this motion of liberty, namely, a tendency to relaxation from compression. For in all simple impulsion or flight through the air, the body is not displaced or moved in space, until its parts are placed in an unnatural state, and compressed by the impelling force. When that takes place, the different parts urging the other in succession, the whole is moved, and that with a rotatory as well as progressive motion, in order that the parts may, by this means also, set themselves at liberty, or more readily submit. Let this suffice for the motion in question.

Let the fourth be that which we term the motion of matter, and which is opposed to the last; for in the motion of liberty, bodies abhor, reject, and avoid, a new size or volume, or any new expansion or contraction (for these different terms have the same meaning), and strive, with all their power, to rebound and resume their former density; on the contrary, in the motion of matter, they are anxious to acquire a new volume or dimension, and attempt it willingly and rapidly, and occasionally by a most vigorous effort, as in the example of gunpowder. The most powerful, or at least most frequent, though not the only instruments of this motion, are heat and cold. For instance, the air, if expanded by tension (as by suction in the glass egg), strugglesanxiously to restore itself; but if heat be applied, it strives, on the contrary, to dilate itself, and longs for a larger volume, regularly passing and migrating into it, as into a new form (as it is termed); nor after a certain degree of expansion is it anxious to return, unless it be invited to do so by the application of cold, which is not indeed a return, but a fresh change. So also water, when confined by compression, resists, and wishes to become as it was before, namely, more expanded; but if there happen an intense and continued cold, it changes itself readily, and of its own accord, into the condensed state of ice; and if the cold be long continued, without any intervening warmth (as in grottoes and deep caves), it is changed into crystal or similar matter, and never resumes its form.

Let the fifth be that which we term the motion of continuity. We do not understand by this simple and primary continuity with any other body (for that is the motion of connection), but the continuity of a particular body in itself; for it is most certain that all bodies abhor a solution of continuity, some more and some less, but all partially. In hard bodies (such as steel and glass) the resistance to an interruption of continuity is most powerful and efficacious, while although in liquids it appears to be faint and languid, yet it is not altogether null, but exists in the lowest degree, and shows itself in many experiments, such as bubbles, the round form of drops, the thin threads which drip from roofs, the cohesion of glutinous substances, and the like. It is most conspicuous, however, if an attempt be made to push this separation to still smaller particles. Thus, in mortars, the pestle produces no effect after a certain degree of contusion, water does not penetrate small fissures, and the air itself, notwithstanding its subtilty,does not penetrate the pores of solid vessels at once, but only by long-continued insinuation.

Let the sixth be that which we term the motion of acquisition, or the motion of need.[151]It is that by which bodies placed among others of a heterogeneous and, as it were, hostile nature, if they meet with the means or opportunity of avoiding them, and uniting themselves with others of a more analogous nature, even when these latter are not closely allied to them, immediately seize and, as it were, select them, and appear to consider it as something acquired (whence we derive the name), and to have need of these latter bodies. For instance, gold, or any other metal in leaf, does not like the neighborhood of air; if, therefore, they meet with any tangible and thick substance (such as the finger, paper, or the like), they immediately adhere to it, and are not easily torn from it. Paper, too, and cloth, and the like, do not agree with the air, which is inherent and mixed in their pores. They readily, therefore, imbibe water or other liquids, and get rid of the air. Sugar, or a sponge, dipped in water or wine, and though part of it be out of the water or wine, and at some height above it, will yet gradually absorb them.[152]

Hence an excellent rule is derived for the opening and dissolution of bodies; for (not to mention corrosive and strong waters, which force their way) if a body can be found which is more adapted, suited, and friendly to a given solid, than that with which it is by some necessity united, the given solid immediately opens and dissolvesitself to receive the former, and excludes or removes the latter.[153]Nor is the effect or power of this motion confined to contact, for the electric energy (of which Gilbert and others after him have told so many fables) is only the energy excited in a body by gentle friction, and which does not endure the air, but prefers some tangible substance if there be any at hand.

Let the seventh be that which we term the motion of greater congregation, by which bodies are borne toward masses of a similar nature, for instance, heavy bodies toward the earth, light to the sphere of heaven. The schools termed this natural motion, by a superficial consideration of it, because produced by no external visible agent, which made them consider it innate in the substances; or perhaps because it does not cease, which is little to be wondered at, since heaven and earth are always present, while the causes and sources of many other motions are sometimes absent and sometimes present. They therefore called this perpetual and proper, because it is never interrupted, but instantly takes place when the others are interrupted, and they called the others adscititious. The former, however, is in reality weak and slow, since it yields, and is inferior to the others as long as they act, unless the mass of the body be great; and although this motion have so filled men’s minds, as almost to have obscured all others, yet they know but little about it, and commit many errors in its estimate.

Let the eighth be that which we term the motion of lesser congregation, by which the homogeneous parts inany body separate themselves from the heterogeneous and unite together, and whole bodies of a similar substance coalesce and tend toward each other, and are sometimes congregated, attracted, and meet, from some distance; thus in milk the cream rises after a certain time, and in wine the dregs and tartar sink; which effects are not to be attributed to gravity and levity only, so as to account for the rising of some parts and the sinking of others, but much more to the desire of the homogeneous bodies to meet and unite. This motion differs from that of need in two points: 1st, because the latter is the stimulus of a malignant and contrary nature, while in this of which we treat (if there be no impediment or restraint), the parts are united by their affinity, although there be no foreign nature to create a struggle; 2dly, because the union is closer and more select. For in the other motion, bodies which have no great affinity unite, if they can but avoid the hostile body, while in this, substances which are connected by a decided kindred resemblance come together and are molded into one. It is a motion existing in all compound bodies, and would be readily seen in each, if it were not confined and checked by the other affections and necessities of bodies which disturb the union.

This motion is usually confined in the three following manners: by the torpor of the bodies; by the power of the predominating body; by external motion. With regard to the first, it is certain that there is more or less sluggishness in tangible bodies, and an abhorrence of locomotion; so that unless excited they prefer remaining contented with their actual state, to placing themselves in a better position. There are three means of breaking through this sluggishness—heat; the active power of a similar body; vivid andpowerful motion. With regard to the first, heat is, on this account, defined as that which separates heterogeneous, and draws together homogeneous substances; a definition of the Peripatetics which is justly ridiculed by Gilbert, who says it is as if one were to define man to be that which sows wheat and plants vineyards; being only a definition deduced from effects, and those but partial. But it is still more to be blamed, because those effects, such as they are, are not a peculiar property of heat, but a mere accident (for cold, as we shall afterward show, does the same), arising from the desire of the homogeneous parts to unite; the heat then assists them in breaking through that sluggishness which before restrained their desire. With regard to the assistance derived from the power of a similar body, it is most conspicuous in the magnet when armed with steel, for it excites in the steel a power of adhering to steel, as a homogeneous substance, the power of the magnet breaking through the sluggishness of the steel. With regard to the assistance of motion, it is seen in wooden arrows or points, which penetrate more deeply into wood than if they were tipped with iron, from the similarity of the substance, the swiftness of the motion breaking through the sluggishness of the wood; of which two last experiments we have spoken above in the aphorism on clandestine instances.[154]

The confinement of the motion of lesser congregation, which arises from the power of the predominant body, is shown in the decomposition of blood and urine by cold. For as long as these substances are filled with the active spirit, which regulates and restrains each of their component parts, as the predominant ruler of the whole, the severaldifferent parts do not collect themselves separately on account of the check; but as soon as that spirit has evaporated, or has been choked by the cold, then the decomposed parts unite, according to their natural desire. Hence it happens, that all bodies which contain a sharp spirit (as salts and the like), last without decomposition, owing to the permanent and durable power of the predominating and imperious spirit.

The confinement of the motion of lesser congregation, which arises from external motion, is very evident in that agitation of bodies which preserves them from putrefaction. For all putrefaction depends on the congregation of the homogeneous parts, whence, by degrees, there ensues a corruption of the first form (as it is called), and the generation of another. For the decomposition of the original form, which is itself the union of the homogeneous parts, precedes the putrefaction, which prepares the way for the generation of another. This decomposition, if not interrupted, is simple; but if there be various obstacles, putrefactions ensue, which are the rudiments of a new generation. But if (to come to our present point) a frequent agitation be excited by external motion, the motion toward union (which is delicate and gentle, and requires to be free from all external influence) is disturbed, and ceases; which we perceive to be the case in innumerable instances. Thus, the daily agitation or flowing of water prevents putrefaction; winds prevent the air from being pestilent; corn turned about and shaken in granaries continues clean: in short, everything which is externally agitated will with difficulty rot internally.

We must not omit that union of the parts of bodies which is the principal cause of induration and desiccation.When the spirit or moisture, which has evaporated into spirit, has escaped from a porous body (such as wood, bone, parchment, and the like), the thicker parts are drawn together, and united with a greater effort, and induration or desiccation is the consequence; and this we attribute not so much to the motion of connection (in order to prevent a vacuum), as to this motion of friendship and union.

Union from a distance is rare, and yet is to be met with in more instances than are generally observed. We perceive it when one bubble dissolves another, when medicines attract humors from a similarity of substance, when one string moves another in unison with it on different instruments, and the like. We are of opinion that this motion is very prevalent also in animal spirits, but are quite ignorant of the fact. It is, however, conspicuous in the magnet, and magnetized iron. While speaking of the motions of the magnet, we must plainly distinguish them, for there are four distinct powers or effects of the magnet which should not be confounded, although the wonder and astonishment of mankind has classed them together. 1. The attraction of the magnet to the magnet, or of iron to the magnet, or of magnetized iron to iron. 2. Its polarity toward the north and south, and its variation. 3. Its penetration through gold, glass, stone, and all other substances. 4. The communication of power from the mineral to iron, and from iron to iron, without any communication of the substances. Here, however, we only speak of the first. There is also a singular motion of attraction between quicksilver and gold, so that the gold attracts quicksilver even when made use of in ointment; and those who work surrounded by the vapors of quicksilver, are wont to hold a piece of gold in their mouths, to collect the exhalations,which would otherwise attack their heads and bones, and this piece soon grows white.[155]Let this suffice for the motion of lesser congregation.

Let the ninth be the magnetic motion, which, although of the nature of that last mentioned, yet, when operating at great distances, and on great masses, deserves a separate inquiry, especially if it neither begin in contact, as most motions of congregation do, nor end by bringing the substances into contact, as all do, but only raise them, and make them swell without any further effect. For if the moon raise the waters, or cause moist substances to swell, or if the starry sphere attract the planets toward their apogees, or the sun confine the planets Mercury and Venus to within a certain distance of his mass;[156]these motions do not appear capable of being classed under either of those of congregation, but to be, as it were, intermediately and imperfectly congregative, and thus to form a distinct species.

Let the tenth motion be that of avoidance, or that which is opposed to the motion of lesser congregation, by which bodies, with a kind of antipathy, avoid and disperse, and separate themselves from, or refuse to unite themselves with others of a hostile nature. For although this may sometimes appear to be an accidental motion, necessarily attendant upon that of the lesser congregation, because the homogeneous parts cannot unite, unless the heterogeneous be first removed and excluded, yet it is still to be classed separately,[157]and considered as a distinct species, because,in many cases, the desire of avoidance appears to be more marked than that of union.

It is very conspicuous in the excrements of animals, nor less, perhaps, in objects odious to particular senses, especially the smell and taste; for a fetid smell is rejected by the nose, so as to produce a sympathetic motion of expulsion at the mouth of the stomach; a bitter and rough taste is rejected by the palate or throat, so as to produce a sympathetic concussion and shivering of the head. This motion is visible also in other cases. Thus it is observed in some kinds of antiperistasis, as in the middle region of the air, the cold of which appears to be occasioned by the rejection of cold from the regions of the heavenly bodies; and also in the heat and combustion observed in subterranean spots, which appear to be owing to the rejection of heat from the centre of the earth. For heat and cold, when in small quantities, mutually destroy each other, while in larger quantities, like armies equally matched, they remove and eject each other in open conflict. It is said, also that cinnamon and other perfumes retain their odor longer when placed near privies and foul places, because they will not unite and mix with stinks. It is well known that quicksilver, which would otherwise reunite into a complete mass, is prevented from so doing by man’s spittle, pork lard, turpentine and the like, from the little affinity of its parts with those substances, so that when surrounded by them it draws itself back, and its avoidance of these intervening obstacles is greater than its desire of reuniting itself to its homogeneous parts; which is what they term the mortification of quicksilver. Again, the difference in weight of oil and water is not the only reason for their refusing to mix, but it is also owing to the little affinity of the two; for spiritsof wine, which are lighter than oil, mix very well with water. A very remarkable instance of the motion in question is seen in nitre, and crude bodies of a like nature, which abhor flame, as may be observed in gunpowder, quicksilver and gold. The avoidance of one pole of the magnet by iron is not (as Gilbert has well observed), strictly speaking, an avoidance, but a conformity, or attraction to a more convenient situation.

Let the eleventh motion be that of assimilation, or self-multiplication, or simple generation, by which latter term we do not mean the simple generation of integral bodies, such as plants or animals, but of homogeneous bodies. By this motion homogeneous bodies convert those which are allied to them, or at least well disposed and prepared, into their own substance and nature. Thus flame multiplies itself over vapors and oily substances and generates fresh flame; the air over water and watery substances multiplies itself and generates fresh air; the vegetable and animal spirit, over the thin particles of a watery or oleaginous spirit contained in its food, multiplies itself and generates fresh spirit; the solid parts of plants and animals, as the leaf, flower, the flesh, bone and the like, each of them assimilate some part of the juices contained in their food, and generate a successive and daily substance. For let none rave with Paracelsus, who (blinded by his distillations) would have it, that nutrition takes place by mere separation, and that the eye, nose, brain and liver lie concealed in bread and meat, the root, leaf and flower, in the juice of the earth; asserting that just as the artist brings out a leaf, flower, eye, nose, hand, foot and the like, from a rude mass of stone or wood by the separation and rejection of what is superfluous; so the great artist within usbrings out our several limbs and parts by separation and rejection. But to leave such trifling, it is most certain that all the parts of vegetables and animals, as well the homogeneous as organic, first of all attract those juices contained in their food, which are nearly common, or at least not very different, and then assimilate and convert them into their own nature. Nor does this assimilation, or simple generation, take place in animated bodies only, but the inanimate also participate in the same property (as we have observed of flame and air), and that languid spirit, which is contained in every tangible animated substance, is perpetually working upon the coarser parts, and converting them into spirit, which afterward is exhaled, whence ensues a diminution of weight, and a desiccation of which we have spoken elsewhere.[158]

Nor should we, in speaking of assimilation, neglect to mention the accretion which is usually distinguished from aliment, and which is observed when mud grows into a mass between stones, and is converted into a stony substance, and the scaly substance round the teeth is converted into one no less hard than the teeth themselves; for we are of opinion that there exists in all bodies a desire of assimilation, as well as of uniting with homogeneous masses. Each of these powers, however, is confined, although in different manners, and should be diligently investigated, because they are connected with the revival of old age. Lastly, it is worthy of observation, that in the nine preceding motions, bodies appear to aim at the mere preservation of their nature, while in this they attempt its propagation.

Let the twelfth motion be that of excitement, which appears to be a species of the last, and is sometimes mentioned by us under that name. It is, like that, a diffusive, communicative, transitive and multiplying motion; and they agree remarkably in their effect, although they differ in their mode of action, and in their subject matter. The former proceeds imperiously and with authority; it orders and compels the assimilated to be converted and changed into the assimilating body. The latter proceeds by art, insinuation and stealth, inviting and disposing the excited toward the nature of the exciting body. The former both multiplies and transforms bodies and substances; thus a greater quantity of flame, air, spirit and flesh is formed; but in the latter, the powers only are multiplied and changed, and heat, the magnetic power, and putrefaction, in the above instances, are increased. Heat does not diffuse itself when heating other bodies by any communication of the original heat, but only by exciting the parts of the heated body to that motion which is the form of heat, and of which we spoke in the first vintage of the nature of heat. Heat, therefore, is excited much less rapidly and readily in stone or metal than in air, on account of the inaptitude and sluggishness of those bodies in acquiring that motion, so that it is probable, that there may be some substances, toward the centre of the earth, quite incapable of being heated, on account of their density, which may deprive them of the spirit by which the motion of excitement is usually commenced. Thus also the magnet creates in the iron a new disposition of its parts, and a conformable motion, without losing any of its virtue. So the leaven of bread, yeast, rennet and some poisons, excite and invite successive and continued motion in dough, beer, cheese orthe human body; not so much from the power of the exciting, as the predisposition and yielding of the excited body.

Let the thirteenth motion be that of impression, which is also a species of motion of assimilation, and the most subtile of diffusive motions. We have thought it right, however, to consider it as a distinct species, on account of its remarkable difference from the last two; for the simple motion of assimilation transforms the bodies themselves, so that if you remove the first agent, you diminish not the effect of those which succeed; thus, neither the first lighting of flame, nor the first conversion into air, are of any importance to the flame or air next generated. So, also, the motion of excitement still continues for a considerable time after the removal of the first agent, as in a heated body on the removal of the original heat, in the excited iron on the removal of the magnet, and in the dough on the removal of the leaven. But the motion of impression, although diffusive and transitive, appears, nevertheless, to depend on the first agent, so that upon the removal of the latter the former immediately fails and perishes; for which reason also it takes effect in a moment, or at least a very short space of time. We are wont to call the two former motions the motions of the generation of Jupiter, because when born they continue to exist; and the latter, the motion of the generation of Saturn, because it is immediately devoured and absorbed. It may be seen in three instances: 1, in the rays of light; 2, in the percussions of sounds; 3, in magnetic attractions as regards communication. For, on the removal of light, colors and all its other images disappear, as on the cessation of the first percussion and the vibration of the body, sound soon fails, and althoughsounds are agitated by the wind, like waves, yet it is to be observed, that the same sound does not last during the whole time of the reverberation. Thus, when a bell is struck, the sound appears to be continued for a considerable time, and one might easily be led into the mistake of supposing it to float and remain in the air during the whole time, which is most erroneous.[159]For the reverberation is not one identical sound, but the repetition of sounds, which is made manifest by stopping and confining the sonorous body; thus, if a bell be stopped and held tightly, so as to be immovable, the sound fails, and there is no further reverberation, and if a musical string be touched after the first vibration, either with the finger (as in the harp), or a quill (as in the harpsichord), the sound immediately ceases. If the magnet be removed the iron falls. The moon, however, cannot be removed from the sea, nor the earth from a heavy falling body, and we can, therefore, make no experiment upon them; but the case is the same.

Let the fourteenth motion be that configuration or position, by which bodies appear to desire a peculiar situation, collocation, and configuration with others, rather than union or separation. This is a very abstruse notion, and has not been well investigated; and, in some instances, appears to occur almost without any cause, although webe mistaken in supposing this to be really the case. For if it be asked, why the heavens revolve from east to west, rather than from west to east, or why they turn on poles situate near the Bears, rather than round Orion or any other part of the heaven, such a question appears to be unreasonable, since these phenomena should be received as determinate and the objects of our experience. There are, indeed, some ultimate and self-existing phenomena in nature, but those which we have just mentioned are not to be referred to that class: for we attribute them to a certain harmony and consent of the universe, which has not yet been properly observed. But if the motion of the earth from west to east be allowed, the same question may be put, for it must also revolve round certain poles, and why should they be placed where they are, rather than elsewhere? The polarity and variation of the needle come under our present head. There is also observed in both natural and artificial bodies, especially solids rather than fluids, a particular collocation and position of parts, resembling hairs or fibres, which should be diligently investigated, since, without a discovery of them, bodies cannot be conveniently controlled or wrought upon. The eddies observable in liquids by which, when compressed, they successively raise different parts of their mass before they can escape, so as to equalize the pressure, is more correctly assigned to the motion of liberty.

Let the fifteenth motion be that of transmission or of passage, by which the powers of bodies are more or less impeded or advanced by the medium, according to the nature of the bodies and their effective powers, and also according to that of the medium. For one medium is adapted to light, another to sound, another to heat andcold, another to magnetic action, and so on with regard to the other actions.

Let the sixteenth be that which we term the royal or political motion, by which the predominant and governing parts of any body check, subdue, reduce, and regulate the others, and force them to unite, separate, stand still, move, or assume a certain position, not from any inclination of their own, but according to a certain order, and as best suits the convenience of the governing part, so that there is a sort of dominion and civil government exercised by the ruling part over its subjects. The motion is very conspicuous in the spirits of animals, where, as long as it is in force, it tempers all the motions of the other parts. It is found in a less degree in other bodies, as we have observed in blood and urine, which are not decomposed until the spirit, which mixed and retained their parts, has been emitted or extinguished. Nor is this motion peculiar to spirits only, although in most bodies the spirit predominates, owing to its rapid motion and penetration; for the grosser parts predominate in denser bodies, which are not filled with a quick and active spirit (such as exists in quicksilver or vitriol), so that unless this check or yoke be thrown off by some contrivance, there is no hope of any transformation of such bodies. And let not any one suppose that we have forgotten our subject, because we speak of predominance in this classification of motions, which is made entirely with the view of assisting the investigation of wrestling instances, or instances of predominance. For we do not now treat of the general predominance of motions or powers, but of that of parts in whole bodies, which constitutes the particular species here considered.

Let the seventeenth motion be the spontaneous motionof revolution, by which bodies having a tendency to move, and placed in a favorable situation, enjoy their peculiar nature, pursuing themselves and nothing else, and seeking, as it were, to embrace themselves. For bodies seem either to move without any limit, or to tend toward a limit, arrived at which they either revolve according to their peculiar nature, or rest. Those which are favorably situated, and have a tendency to motion, move in a circle with an eternal and unlimited motion; those which are favorably situated and abhor motion, rest. Those which are not favorably situated move in a straight line (as their shortest path), in order to unite with others of a congenial nature. This motion of revolution admits of nine differences: 1, with regard to the centre about which the bodies move; 2, the poles round which they move; 3, the circumference or orbit relatively to its distance from the centre; 4, the velocity, or greater or less speed with which they revolve; 5, the direction of the motion as from east to west, or the reverse; 6, the deviation from a perfect circle, by spiral lines at a greater or less distance from the centre; 7, the deviation from the circle, by spiral lines at a greater or less distance from the poles; 8, the greater or less distance of these spirals from each other; 9, and lastly, the variation of the poles if they be movable; which, however, only affects revolution when circular. The motion in question is, according to common and long-received opinion, considered to be that of the heavenly bodies. There exists, however, with regard to this, a considerable dispute between some of the ancients as well as moderns, who have attributed a motion of revolution to the earth. A much more reasonable controversy, perhaps, exists (if it be not a matter beyond dispute), whether the motion in question (onthe hypothesis of the earth’s being fixed) is confined to the heavens, or rather descends and is communicated to the air and water. The rotation of missiles, as in darts, musket-balls, and the like, we refer entirely to the motion of liberty.

Let the eighteenth motion be that of trepidation,[160]to which (in the sense assigned to it by astronomers) we do not give much credit; but in our serious and general search after the tendencies of natural bodies, this motion occurs, and appears worthy of forming a distinct species. It is the motion of an (as it were) eternal captivity; when bodies, for instance, being placed not altogether according to their nature, and yet not exactly ill, constantly tremble, and are restless, not contented with their position, and yet not daring to advance. Such is the motion of the heart and pulse of animals, and it must necessarily occur in all bodies which are situated in a mean state, between conveniences and inconveniences; so that being removed from their proper position, they strive to escape, are repulsed, and again continue to make the attempt.

Let the nineteenth and last motion be one which can scarcely be termed a motion, and yet is one; and which we may call the motion of repose, or of abhorrence of motion. It is by this motion that the earth stands by its own weight, while its extremes move toward the middle, not to an imaginary centre, but in order to unite. It is owing to the same tendency, that all bodies of considerable density abhor motion, and their only tendency is not to move, which nature they preserve, although excited and urgedin a variety of ways to motion. But if they be compelled to move, yet do they always appear anxious to recover their former state, and to cease from motion, in which respect they certainly appear active, and attempt it with sufficient swiftness and rapidity, as if fatigued, and impatient of delay. We can only have a partial representation of this tendency, because with us every tangible substance is not only not condensed to the utmost, but even some spirit is added, owing to the action and concocting influence of the heavenly bodies.

We have now, therefore, exhibited the species, or simple elements of the motions, tendencies, and active powers, which are most universal in nature; and no small portion of natural science has been thus sketched out. We do not, however, deny that other instances can perhaps be added, and our divisions changed according to some more natural order of things, and also reduced to a less number; in which respect we do not allude to any abstract classification, as if one were to say, that bodies desire the preservation, exaltation, propagation, or fruition of their nature; or, that motion tends to the preservation and benefit either of the universe (as in the case of those of resistance and connection), or of extensive wholes, as in the case of those of the greater congregation, revolution, and abhorrence of motion, or of particular forms, as in the case of the others. For although such remarks be just, yet, unless they terminate in matter and construction, according to true definitions, they are speculative, and of little use. In the meantime, our classification will suffice, and be of much use in the consideration of the predominance of powers, and examining the wrestling instances which constitute our present subject.

For of the motions here laid down, some are quite invincible, some more powerful than others, which they confine, check, and modify; others extend to a greater distance, others are more immediate and swift, others strengthen, increase, and accelerate the rest.

The motion of resistance is most adamantine and invincible. We are yet in doubt whether such be the nature of that of connection; for we cannot with certainty determine whether there be a vacuum, either extensive or intermixed with matter. Of one thing, however, we are satisfied, that the reason assigned by Leucippus and Democritus for the introduction of a vacuum (namely, that the same bodies could not otherwise comprehend, and fill greater and less spaces) is false. For there is clearly a folding of matter, by which it wraps and unwraps itself in space within certain limits, without the intervention of a vacuum. Nor is there two thousand times more of vacuum in air than in gold, as there should be on this hypothesis; a fact demonstrated by the very powerful energies of fluids (which would otherwise float like fine dustin vacuo), and many other proofs. The other motions direct, and are directed by each other, according to their strength, quantity, excitement, emission, or the assistance or impediments they meet with.

For instance; some armed magnets hold and support iron of sixty times their own weight; so far does the motion of lesser congregation predominate over that of the greater; but if the weight be increased, it yields. A lever of a certain strength will raise a given weight, and so far the motion of liberty predominates over that of the greater congregation, but if the weight be greater, the former motion yields. A piece of leather stretched to a certain point does not break, and so far the motion of continuitypredominates over that of tension, but if the tension be greater, the leather breaks, and the motion of continuity yields. A certain quantity of water flows through a chink, and so far the motion of greater congregation predominates over that of continuity, but if the chink be smaller it yields. If a musket be charged with ball and powdered sulphur alone, and fire be applied, the ball is not discharged, in which case the motion of greater congregation overcomes that of matter; but when gunpowder is used, the motion of matter in the sulphur predominates, being assisted by that motion, and the motion of avoidance in the nitre; and so of the rest. For wrestling instances (which show the predominance of powers, and in what manner and proportion they predominate and yield) must be searched for with active and industrious diligence.

The methods and nature of this yielding must also be diligently examined, as for instance, whether the motions completely cease, or exert themselves, but are constrained. For in the bodies with which we are acquainted, there is no real but an apparent rest, either in the whole or in parts. This apparent rest is occasioned either by equilibrium, or the absolute predominance of motions. By equilibrium, as in the scales of the balance, which rest if the weights be equal. By predominance, as in perforated jars, in which the water rests, and is prevented from falling by the predominance of the motion of connection. It is, however, to be observed (as we have said before), how far the yielding motions exert themselves. For if a man be held stretched out on the ground against his will, with arms and legs bound down, or otherwise confined, and yet strive with all his power to get up, the struggle is not the less, although ineffectual. The real state of the case (namely, whetherthe yielding motion be, as it were, annihilated by the predominance, or there be rather a continued, although an invisible effort) will, perhaps, appear in the concurrence of motions, although it escape our notice in their conflict. For instance: let an experiment be made with muskets; whether a musket-ball, at its utmost range in a straight line, or (as it is commonly called) point-blank, strike with less force when projected upward, where the motion of the blow is simple, than when projected downward, where the motion of gravity concurs with the blow.

The rules of such instances of predominance as occur should be collected: such as the following; the more general the desired advantage is, the stronger will be the motion; the motion of connection, for instance, which relates to the intercourse of the parts of the universe, is more powerful than that of gravity, which relates to the intercourse of dense bodies only. Again, the desire of a private good does not in general prevail against that of a public one, except where the quantities are small. Would that such were the case in civil matters!

XLIX. In the twenty-fifth rank of prerogative instances we will place suggesting instances; such as suggest, or point out, that which is advantageous to mankind; for bare power and knowledge in themselves exalt rather than enrich human nature. We must, therefore, select from the general store such things as are most useful to mankind. We shall have a better opportunity of discussing these when we treat of the application to practice; besides, in the work of interpretation, we leave room, on every subject, for the human or optative chart; for it is a part of science to make judicious inquiries and wishes.

L. In the twenty-sixth rank of prerogative instances wewill place the generally useful instances. They are such as relate to various points, and frequently occur, sparing by that means considerable labor and new trials. The proper place for treating of instruments and contrivances, will be that in which we speak of the application to practice, and the methods of experiment. All that has hitherto been ascertained, and made use of, will be described in the particular history of each art. At present, we will subjoin a few general examples of the instances in question.

Man acts, then, upon natural bodies (besides merely bringing them together or removing them) by seven principal methods: 1, by the exclusion of all that impedes and disturbs; 2, by compression, extension, agitation, and the like; 3, by heat and cold; 4, by detention in a suitable place; 5, by checking or directing motion; 6, by peculiar harmonies; 7, by a seasonable and proper alternation, series, and succession of all these, or, at least, of some of them.

1. With regard to the first—common air, which is always at hand, and forces its admission, as also the rays of the heavenly bodies, create much disturbance. Whatever, therefore, tends to exclude them may well be considered as generally useful. The substance and thickness of vessels in which bodies are placed when prepared for operations may be referred to this head. So also may the accurate methods of closing vessels by consolidation, or thelutum sapientiæ, as the chemists call it. The exclusion of air by means of liquids at the extremity is also very useful, as when they pour oil on wine, or the juices of herbs, which by spreading itself upon the top like a cover, preserves them uninjured from the air. Powders, also, are serviceable, for although they contain air mixed up in them, yet they ward off the power of the mass of circumambient air,which is seen in the preservation of grapes and other fruits in sand or flour. Wax, honey, pitch, and other resinous bodies, are well used in order to make the exclusion more perfect, and to remove the air and celestial influence. We have sometimes made an experiment by placing a vessel or other bodies in quicksilver, the most dense of all substances capable of being poured round others. Grottoes and subterraneous caves are of great use in keeping off the effects of the sun, and the predatory action of air, and in the north of Germany are used for granaries. The depositing of bodies at the bottom of water may be also mentioned here; and I remember having heard of some bottles of wine being let down into a deep well in order to cool them, but left there by chance, carelessness, and forgetfulness for several years, and then taken out; by which means the wine not only escaped becoming flat or dead, but was much more excellent in flavor, arising (as it appears) from a more complete mixture of its parts. But if the case require that bodies should be sunk to the bottom of water, as in rivers or the sea, and yet should not touch the water, nor be inclosed in sealed vessels, but surrounded only by air, it would be right to use that vessel which has been sometimes employed under water above ships that have sunk, in order to enable the divers to remain below and breathe occasionally by turns. It was of the following nature: A hollow tub of metal was formed, and sunk so as to have its bottom parallel with the surface of the water; it thus carried down with it to the bottom of the sea all the air contained in the tub. It stood upon three feet (like a tripod), being of rather less height than a man, so that, when the diver was in want of breath, he could put his head into the hollow of the tub, breathe, and then continue his work.We hear that some sort of boat or vessel has now been invented, capable of carrying men some distance under water. Any bodies, however, can easily be suspended under some such vessel as we have mentioned, which has occasioned our remarks upon the experiment.

Another advantage of the careful and hermetical closing of bodies is this—not only the admission of external air is prevented (of which we have treated), but the spirit of bodies also is prevented from making its escape, which is an internal operation. For any one operating on natural bodies must be certain as to their quantity, and that nothing has evaporated or escaped, since profound alterations take place in bodies, when art prevents the loss or escape of any portion, while nature prevents their annihilation. With regard to this circumstance, a false idea has prevailed (which if true would make us despair of preserving quantity without diminution), namely, that the spirit of bodies, and air when rarefied by a great degree of heat, cannot be so kept in by being inclosed in any vessel as not to escape by the small pores. Men are led into this idea by the common experiments of a cup inverted over water, with a candle or piece of lighted paper in it, by which the water is drawn up, and of those cups which, when heated, draw up the flesh. For they think that in each experiment the rarefied air escapes, and that its quantity is therefore diminished, by which means the water or flesh rises by the motion of connection. This is, however, most incorrect. For the air is not diminished in quantity, but contracted in dimensions,[161]nor does this motion of the rising of the waterbegin till the flame is extinguished, or the air cooled, so that physicians place cold sponges, moistened with water, on the cups, in order to increase their attraction. There is, therefore, no reason why men should fear much from the ready escape of air: for although it be true that the most solid bodies have their pores, yet neither air, nor spirit, readily suffers itself to be rarefied to such an extreme degree; just as water will not escape by a small chink.

2. With regard to the second of the seven above-mentioned methods, we must especially observe, that compression and similar violence have a most powerful effect either in producing locomotion, and other motions of the same nature, as may be observed in engines and projectiles, or in destroying the organic body, and those qualities, which consist entirely in motion (for all life, and every description of flame and ignition are destroyed by compression, which also injures and deranges every machine); or in destroying those qualities which consist in position and a coarse difference of parts, as in colors; for the color of a flower when whole, differs from that it presents when bruised, and the same may be observed of whole and powdered amber; or in tastes, for the taste of a pear before it is ripe, and of the same pear when bruised and softened, is different, since it becomes perceptibly more sweet. But such violence is of little avail in the more noble transformations and changes of homogeneous bodies, for they do not, by such means, acquire any constantly and permanently new state, but one that is transitory, and always struggling to return to its former habit and freedom. It would not, however, be uselessto make some more diligent experiments with regard to this; whether, for instance, the condensation of a perfectly homogeneous body (such as air, water, oil, and the like) or their rarefaction, when effected by violence, can become permanent, fixed, and, as it were, so changed, as to become a nature. This might at first be tried by simple perseverance, and then by means of helps and harmonies. It might readily have been attempted (if we had but thought of it), when we condensed water (as was mentioned above), by hammering and compression, until it burst out. For we ought to have left the flattened globe untouched for some days, and then to have drawn off the water, in order to try whether it would have immediately occupied the same dimensions as it did before the condensation. If it had not done so, either immediately, or soon afterward, the condensation would have appeared to have been rendered constant; if not, it would have appeared that a restitution took place, and that the condensation had been transitory. Something of the same kind might have been tried with the glass eggs; the egg should have been sealed up suddenly and firmly, after a complete exhaustion of the air, and should have been allowed to remain so for some days, and it might then have been tried whether, on opening the aperture, the air would be drawn in with a hissing noise, or whether as much water would be drawn into it when immersed, as would have been drawn into it at first, if it had not continued sealed. For it is probable (or, at least, worth making the experiment) that this might have happened, or might happen, because perseverance has a similar effect upon bodies which are a little less homogeneous. A stick bent together for some time does not rebound, which is not owing to any loss of quantity in the wood during the time, for the same wouldoccur (after a larger time) in a plate of steel, which does not evaporate. If the experiment of simple perseverance should fail, the matter should not be given up, but other means should be employed. For it would be no small advantage, if bodies could be endued with fixed and constant natures by violence. Air could then be converted into water by condensation, with other similar effects; for man is more the master of violent motions than of any other means.

3. The third of our seven methods is referred to that great practical engine of nature, as well as of art, cold and heat. Here, man’s power limps, as it were, with one leg. For we possess the heat of fire, which is infinitely more powerful and intense than that of the sun (as it reaches us), and that of animals. But we want cold,[162]except such as we can obtain in winter, in caverns, or by surrounding objects with snow and ice, which, perhaps, may be compared in degree with the noontide heat of the sun in tropical countries, increased by the reflection of mountains and walls. For this degree of heat and cold can be borne for a short period only by animals, yet it is nothing compared with the heat of a burning furnace, or the corresponding degree of cold.[163]Everything with us has a tendency to become rarefied, dry and wasted, and nothingto become condensed or soft, except by mixtures, and, as it were, spurious methods. Instances of cold, therefore, should be searched for most diligently, such as may be found by exposing bodies upon buildings in a hard frost, in subterraneous caverns, by surrounding bodies with snow and ice in deep places excavated for that purpose, by letting bodies down into wells, by burying bodies in quicksilver and metals, by immersing them in streams which petrify wood, by burying them in the earth (which the Chinese are reported to do with their china, masses of which, made for that purpose, are said to remain in the ground for forty or fifty years, and to be transmitted to their heirs as a sort of artificial mine) and the like. The condensations which take place in nature, by means of cold, should also be investigated, that by learning their causes, they may be introduced into the arts; such as are observed in the exudation of marble and stones, in the dew upon the panes of glass in a room toward morning after a frosty night, in the formation and the gathering of vapors under the earth into water, whence spring fountains and the like.


Back to IndexNext