It must be evident therefore, that, if the lymphatics in any cavity become debilitated, or by any other means be prevented from absorbing this exhaled fluid, an accumulation of it will take place: the same will happen, if the exhaling arteries be debilitated, so as to allow a greater quantity of fluid to escape than the absorbents can take up. When the balance between exhalation and absorption is destroyed, by either or both of these means, a dropsy will be the consequence.
Before we finish the subject of digestion, I shall take a short view of some of the morbid affections, attending this important function of the animal economy.
A deficiency of appetite may arise, either from an affection of the stomach, or a morbid state of the body: for there is such a sympathy between the stomach and the rest of the system, that the first is very seldom disordered, without communicating more or less disorder to the system: nor can the system become deranged and the stomach remain sound.
A want of appetite may arise from overloading the stomach, whereby its digestive powers will be weakened. And this may be occasioned in two ways. First, by taking food of the common quality in too great quantity, which will certainly weaken the powers of the stomach. An excellent rule, and one which if more attended to, would prevent the dreadful consequences of indigestion, is always to rise from the table with some remains of appetite. This is a rule applicable to every constitution, but particularly to the sedentary and debilitated.
The second way in which the stomach may be debilitated, is by taking food too highly stimulating or seasoned; and this even produces much worse effects than an over dose with respect to quantity. The tone of the stomach is destroyed, and a crude unassimilated chyle is absorbed by the lacteals, and carried into the blood, contaminating its whole mass. Made dishes, enriched with hot sauces, stimulate infinitely more than plain food, and bring on diseases of the worst kind: such as gout, apoplexy, and paralysis. "For my part," says an elegant writer, "when I behold a fashionable table set out in all its magnificence, I fancy I see gouts, and dropsies, fevers, and lethargies, with other innumerable distempers, lying in ambuscade among the dishes."
All times of the day are not equally fitted for the reception of nourishment. That digestion may be well performed, the functions of the stomach and of the body must be in full vigour. The early part of the day therefore is the proper time for taking nutriment; and, in my opinion, the principal meal should not be taken after two or three o'clock, and there should always be a sufficient time between each meal to enable the stomach to digest its contents. I need not remark how very different this is from the common practice of jumbling two or three meals together, and at a time of the day likewise when the system is overloaded. The breakfast at sunrise, the noontide repast and the twilight pillow, which distinguished the days of Elizabeth, are now changed for the evening breakfast, and the midnight dinner. The evening is by no means the proper time to take much nourishment: for the powers of the system, and particularly of the stomach, are then almost exhausted, and the food will be but half digested. Besides, the addition of fresh chyle to the blood, together with the stimulus of food acting on the stomach, always prevents sleep, or renders it confused and disturbed, and instead of having our worn out spirits recruited, by what is emphatically called by Shakespeare, "the chief nourisher in life's feast," and rising in the morning fresh and vigorous, we become heavy and stupid, and feel the whole system relaxed.
It is by no means uncommon, for a physician to have patients, chiefly among people of fashion and fortune, who complain of being hot and restless all night, and having a bad taste in the mouth in the morning. On examination, I have found that, at least in nineteen cases out of twenty, this has arisen from their having overloaded their stomachs, and particularly from eating hot suppers; nor do I recollect a single instance of a complaint of this kind in any person not in the habit of eating such suppers.
The immoderate use of spirituous and fermented liquors, is still more destructive of the digestive powers of the stomach; but this will be better understood, when we have examined the laws by which external powers act upon the body. The remarks I have made could not, however, I think, have come in better, than immediately after our examination of the structure of the digestive organs, as the impropriety of intemperance, with respect to food, is thus rendered more evident.
The appetite becomes deficient from want of exercise, independently of the other causes that have been mentioned. Of all the various modes of preserving health, and preventing diseases, there is none more efficacious than exercise; it quickens the motion of the fluids, strengthens the solids, causes a more perfect sanguification in the lungs, and, in short, gives strength and vigour to every function of the body. Hence it is, that the Author of nature has made exercise absolutely necessary to the greater part of mankind for obtaining means of existence. Had not exercise been absolutely necessary for our well being, says the elegant Addison, nature would not have made the body so proper for it, by giving such an activity to the limbs, and such a pliancy to every part, as necessarily produce those compressions, extensions, contortions, dilatations, and all other kinds of motion, as are necessary for the preservation of such a system of tubes and glands.
We may, indeed, observe, that nature has never given limbs to any animal, without intending that they should be used. To fish she has given fins, and to the fowls of the air wings, which are incessantly used in swimming and flying; and if she had destined mankind to be eternally dragged about by horses, her provident economy would surely have denied them legs.
The appetite becomes deficient on the commencement of many diseases, but this is to be looked upon here rather as a salutary than as a morbid symptom, and as a proof that nature refuses the load, which she can neither digest nor bear with impunity.
In healthy people the appetite is various, some requiring more food than others; but it sometimes becomes praeternaturally great, and then may be regarded as a morbid symptom. The appetite may be praeternaturally increased, either by an unusual secretion of the gastric juice, which acts upon the coats of the stomach, or by any acrimony, either generated in, or received into the stomach, or, lastly, by habit, for people undoubtedly may gradually accustom themselves to take more food than is necessary.
The appetite sometimes becomes depraved, and a person thus affected, feels a desire to eat substances that are by no means nutritious, or even esculent: this often depends on a debilitated state of the whole system. There are some instances, however, in which this depravity of the appetite is salutary; for example, the great desire which some persons, whose stomachs abound with acid, have for eating chalk, and other absorbent earths: likewise, the desire which scorbutic patients have for grass, and other fresh vegetables. Appetites of this kind, if moderately indulged in, are salutary, rather than hurtful.
The appetite for liquids as well as solids is sometimes observed to be deficient, and sometimes too great. The former can scarcely be considered as a morbid symptom, provided the digestion and health be otherwise good. But when along with diminished thirst, the fauces and tongue are dry, this deficiency may be regarded as a morbid and dangerous symptom.
A more common morbid symptom, however, is too great thirst, which may arise from a deficiency of fluids in the body, produced by violent exercise, perspiration, too great a flow of urine, or too great an evacuation of the intestines. A praeternatural thirst may likewise arise from any acrid substance received into the stomach, which our provident mother, nature, teaches us to correct by dilution; this is the case with respect to salted meats, or those highly seasoned with pepper. It may arise also from the stomach being overloaded with unconcocted aliment, or from a suppressed or diminished secretion of the salivary liquors in the mouth, which may arise from fever, spasm, or affections of the mind; an increased thirst may likewise take place, from a derivation or determination of the fluids to other parts of the body; of this, dropsy affords an example. Indeed, various causes may concur to increase the thirst; this is the case in most fevers, where great thirst is occasioned by the dissipation of the fluids of the body by heat, as well as by the diminished secretion of the salivary humours which should moisten the mouth; to which may be added, the heat and diminished concoctive powers of the stomach.
From what has been said, we can easily understand, why praeternatural thirst may sometimes be a necessary instinct of nature, at other times, an unnecessary craving; why acids, acescent fruits, and weak fermented liquors quench thirst more powerfully than pure water; and lastly, why thirst, in some instances, may be relieved by emetics, when it has resisted other remedies.
There is no organ of the body whose functions are so easily deranged as those of the stomach; and these derangements prove a very fertile source of disease; they ought, therefore, carefully to be guarded against; and it is fortunate for us that we have this generally in our power, if we would but avail ourselves of it: for most of the derangements proceed from the improper use of food and drink, and a neglect of exercise. Indeed, when we examine, we shall find but a short list in the long catalogue of human diseases, which it is not in our power to guard against and prevent: and which surely will be guarded against, when their causes are known, and consequences understood.
Among the diseases arising from a disordered state of the stomach and indigestion, may be enumerated the following: great oppression and anxiety, pain in the region of the stomach, with acid eructations, nausea, vomiting, the bowels sometimes costive, sometimes too loose, but seldom regular, depression of spirits, and all the long list, commonly, but very improperly, termed nervous complaints, deficient nutrition, and consequently general weakness, a relaxed state of the solids, too great a tenuity of the fluids, headach, vertigo, and many other complaints, too numerous to mention here.
The greatest misfortune, and which indeed arises from a want of physiological knowledge, is, that people labouring under these disorders, imagine they may be cured by the reception of drugs into the stomach, and thus they are induced to receive into that organ, half the contents of an apothecary's shop. There is no doubt that these complaints may oftentimes be alleviated, and the cure assisted, by medicines: thus, when the stomach is overloaded, this may be removed by an emetic; the same complaint of the bowels may be removed by a cathartic; and when the stomach is debilitated, we are acquainted with some substances which will give it vigour, such as iron, the Peruvian bark, and several kinds of bitters. These however, when used alone, afford but temporary relief; and unless the cause which induced the disease be removed, it will afterwards return with redoubled violence. When the stomach, for instance, is debilitated by want of exercise, I would ask, is there an article in the whole materia medica, that can cure the complaints of sedentary people, unless proper exercise at the same time be taken? With exercise tonic remedies will undoubtedly accelerate the cure, but without it, they will only make bad worse.
Again, when the stomach is debilitated by the use of improper food, or the abuse of fermented or spirituous liquors, I would say to any one who pretended to cure me of these complaints, without my making a total change in the manner of living, that he either was ignorant of the matter, or intended to deceive me.
In many cases the change of food must be strictly observed and persevered in for a long time before a cure can be effected. In some instances where the powers of the stomach were too weak to prevent the food from undergoing perhaps both a vinous and acetous fermentation, and where, in consequence of the disengagement of gas and the formation of acid, the most excruciating pains were felt, the most dreadful sickness experienced, and all the symptoms of indigestion present in the most aggravated state; after almost every article in the materia medica, generally employed, had been tried without success, I have cured the patient merely by prohibiting food subject to fermentation, such as vegetables, and enjoining a strict use of animal food alone.
In short, wherever the cause of a disease can be ascertained, the grand and simple secret in the cure, is the careful removal of that cause.
In this lecture, I propose to take a view of the connexion of man with the external world, and shall endeavour to point out the manner in which he becomes acquainted with external objects, by means of the faculties called senses.
A human creature is an animal endowed with understanding, and reason; a being composed of an organized body, and a rational mind.
With respect to his body, he is pretty similar to other animals, having similar organs, powers, and wants. All animals have a body composed of several parts, and, though these may differ from the structure of the human body in some circumstances, to accommodate it to peculiar habits and wants of the animal, still there is a great similarity in the general structure.
The human body is feeble at its commencement, increases gradually in its progress by the help of nourishment and exercise, till it arrives at a certain period, when it appears in full vigour; from this time it insensibly declines to old age, which conducts it at length to dissolution. This is the ordinary course of human life, unless it happens to be abridged either by disease or accident.
With regard to his reasoning faculties, or mind, man is eminently distinguished from other animals. It is by this noble part that he thinks, and is capable of forming just ideas of the different objects that surround him: of comparing them together; of inferring from known principles unknown truths; of passing a solid judgment on the mutual agreement of things, as well as on the relations they bear to him; of deliberating on what is proper or improper to be done; and of determining how to act. The mind recollects what is past, joins it with the present, and extends its views to futurity. It is capable of penetrating into the causes of events, and discovering the connexion that exists between them.
Governed by invariable laws, which connect him with all the beings, whether animate or inanimate, among which he exists, man has certain relations of convenience, and inconvenience, arising from the particular constitution of the surrounding objects, as well as of his own body. These external objects possess qualities which may be useful or prejudicial to him; and his interest requires, that he should be capable of ascertaining and appreciating these properties.
It is by sensation, or feeling, that the knowledge of external objects is obtained. The faculty of feeling, modified in every organ, perceives those qualities for which the peculiar structure of the organ is fitted; and all the various sensations of sound, colour, taste, smell, resistance, and temperature, find appropriate organs by which they are perceived, without mixing with, or confounding each other. External objects, therefore, act upon the parts of the body endowed with feeling, and their action is diversified in such a manner, as to give us a great number of sensations, which appear to have no resemblance to each other, and which make us acquainted with the various properties of surrounding objects.
It would not, however, have been sufficient for man, merely to have possessed this power of perceiving the different properties of the objects which surround him: it was necessary likewise, that he should be possessed of motion, that he might be able to approach or avoid them, to seize or repulse them, as it suited his convenience or advantage. By the extreme mobility of his limbs, he is able to move his body, and transport it from place to place; to bring external objects nearer to him, to remove them to a greater distance, and to place them in such situations and such circumstances, as may enable them to act on each other, and produce the changes which he wishes.
The human body, therefore, may be regarded as a machine composed (besides the moving parts which have formerly been noticed) of divers organs upon which external objects act, and produce those impressions which convince us of their presence, and make us acquainted with their properties. These impressions are transmitted to the sentient principle, or mind; and the faculty we possess of perceiving these impressions has been called by physiologists, sensibility.
Sensation has generally been defined by metaphysicians to be a change in the mind, of which we are conscious, caused by a correspondent change in the state of the body. This definition, however, leaves the matter where they found it, and throws no light whatever on the nature of sensation; nor can we say any thing more concerning it, than that, when the organs are in a sound state, certain sensations are perceived, which force us to believe in the existence of external objects, though there is no similarity whatever, nor any necessary connexion, that we can perceive, between the sensation and the object which caused it.
All the different degrees of sensation may be reduced to two kinds: pleasant and painful. The nature of these two primitive modes of sensation, is as little known to us as their different species: all that can be said, is, that the general laws by which the body is governed, are such, that pleasure is generally connected with those impressions which tend to its preservation, and pain with those which cause its destruction.
In a general point of view, sensibility may be regarded as an essential property of every part of the living body, disposing each part to perform those functions, the object of which is to preserve the life of the animal. Sensibility presides over the most necessary functions, and watches carefully over the health of the body: she directs the choice of the air proper for respiration, and also of alimentary substances; the mechanism of the secretions is likewise placed under her power; and in the same way that the eye perceives colours, and the ear sounds, so every animated and living part is fitted to receive impressions from the objects appropriated to it.
That every part of the animal is endowed with sensibility, is evident from a variety of facts, particularly from the action which follows when a muscle taken out of the animal body is irritated by any stimulus: this is evident, by a variety of facts mentioned by Whytt, Boerhaave, and others, which show, that parts recently taken from the animal body retain a portion of sensibility, which continues to animate them, and render them capable of action for a considerable time.
The primary organ of sensation appears to be the brain, its continuation in the form of medulla oblongata and spinal marrow, and the various nerves proceeding from these; and it seems now generally agreed, that unless there be a free communication of nerves between the part where the impression is made, and the brain, no sensation will take place; for instance, if the nerves be cut or compressed.
In a sound body, sensation is caused, whenever a change takes place in the state of the nervous power, whether that change be produced by an external, or an internal cause. The former kind of sensation is said to arise from impression or impulse, the latter from consciousness.
Every impression or impulse is not, however, equally calculated to produce sensation; for this purpose, a middle degree of impulse appears the best. An impulse considerably less produces no sensation, and one more violent may cause pain, but no proper sensation denoting the presence or properties of external objects. Thus too small a degree of light makes no impression on the optic nerve; and if the object be too strongly illuminated, the eye is pained, but has no proper idea of the figure or colour of the object. In the same way, if the vibrations which give us an idea of sound, be either too quick or too slow, we shall not obtain this idea. When the vibration is too quick, a very disagreeable and irritating sensation is perceived, as for instance, in the whetting of a saw: and on the other hand, when the vibrations are too slow, they will not produce a tone or sound. This might be proved of all the senses, and shows, that a certain degree of impression is necessary to produce perfect sensation.
There is another circumstance likewise requisite to produce sensation: it is not enough, that the impression should be of the proper strength; it is necessary likewise, that it should remain for some time, otherwise no sensation will be produced. There are many bodies whose magnitude is amply sufficient to be perceived by the eye; yet, by reason of their great velocity, the impulse they make on any part of the retina is so short, that they are not visible. This is proved by our not perceiving the motions of cannon and musket balls, and many other kinds of motion. On this principle depends the art of conjuration, or legerdemain; the fundamental maxim of those who practise them, is, that the motion is too quick for sight.
If the impulse be of a proper degree, and be continued for a sufficient length of time, the impression made by it will not immediately vanish with the impulse which caused it, but will remain for a time proportioned to the strength of the impulse. This, with respect to sight, is proved by whirling a firebrand in a circular manner, by which the impression of a circle is caused, instead of a moving point: and, with respect to hearing, it may be observed, that when children run with a stick quickly along railing, or when a drum is beaten quickly, the idea of a continued sound is produced, because the impression remains some time: for it is evident, that the sounds produced in succession are perfectly distinct and insulated.
Sensation likewise depends, in a great measure, on the state of the mind, and on the degree of attention which it gives. For if we are engaged in attention to any object, we are insensible of the impressions made upon us by others, though they are sufficiently strong to affect us at other times. Thus, when our attention is fixed strongly upon any particular object, we become insensible of the various noises that surround us, though these may be sometimes very loud. On the contrary, if our attention be upon the watch, we can perceive slight, and almost neglected impressions, while those of greater magnitude become insensible. The ticking of a clock becomes insensible to us from repetition, but if we attend to it, we become easily sensible of it, though at the same time we become insensible of much stronger impressions, such as the rattling of coaches in the streets.
The attention depends in some degree on the will, but is generally given to those impressions which are particularly strong, new, pleasant, or disagreeable; in short, to those which particularly affect the mind. Hence it is, that things which are new, produce the most vivid impressions, which gradually grow fainter, and at last become imperceptible.
There is one circumstance respecting sensation, which will probably account for our only perceiving those impressions to which the mind attends: and this is, that the mind is incapable of perceiving more than one impression at a time: the more accurately we examine this, the greater reason we shall have to think it true; but the mind can turn its attention so quickly, from one object to another, that at first sight, we are led to believe, that we are able to attend to several at the same time.
But though the mind cannot perceive or attend to various sensations at the same time, yet if two or more of these are capable of uniting in such a manner as to produce a compound sensation, this may be perceived by the mind.
This compound sensation may be produced either by impressions made at the same instant, or succeeding each other so quickly, that the second takes place before the first has vanished.
As an instance of the first, we may mention musical chords, or the sounds produced by the union of two or more tones at the same time. We have another instance likewise in odours or smells; if two or more perfumes be mixed together, a compound odour will be perceived, different from any of them.
As an instance of the latter, if a paper painted of various colours be made to revolve rapidly in a circle, a compound colour, different from any of them, will be perceived. These observations apply particularly to the senses we have mentioned, and likewise to taste: but the sensations afforded us by touch do not seem capable of being compounded in this manner.
There are many things necessary to perfect sensation, besides those that have been mentioned. The degree and perfection of sensation will depend much on the mind, and will be continually altered by delirium, torpor, sleep, and other circumstances; much likewise depends on the state of the organs with respect to preceding impressions; for if any organ of sense have been subjected to a strong impression, it will become nearly insensible of those which are weaker.
Of this innumerable instances may be given: an eye which has been subjected to a strong light, becomes insensible of a weaker: and on the contrary, if the organs of sense have been deprived of their accustomed impressions for some time, they are affected by very slight ones. Hence it is, that when a person goes from daylight into a darkened room, he can at first see nothing; by degrees however he begins to have an imperfect perception of the different objects, and if he remain long enough, he will see them with tolerable distinctness, though the quantity of light be the same as when he entered the room, when they were invisible to him.
Sensation often arises from internal causes, without any external impulse. To this source may be referred consciousness, memory, imagination, volition, and other affections of the mind. These are called the internal senses. The senses, whether internal or external, have never been accurately reduced to classes, orders, or genera; the external indeed are generally referred to five orders; namely, seeing, hearing, smelling, tasting, and feeling, or touch. With respect to the four first, the few qualities of external bodies which each perceives may be easily reduced to classes, each of which may be referred to its peculiar organ of sensation, because each organ is so constituted, that it can only be affected by one class of properties; thus the eye can only be affected by light; the ear by the vibrations of the air, and so of the rest.
The same organ, whatever be its state, or whatever be the degree of impulse, always gives to the mind a similar sensation; nor is it possible, by any means we are acquainted with, to communicate the sensation peculiar to one organ by means of another. Thus we are incapable, for instance, of hearing with our eyes, and seeing with our ears: nor have we any reason to believe that similar impressions produce dissimilar sensations in different people. The pleasure, however, as well as the pain and disgust, accompanying different sensations, differ very greatly in different persons, and even in the same person at different times; for the sensations which sometimes afford us pleasure, at other times produce disgust.
Habit has a powerful influence in modifying the pleasures of sensation, without producing any change in the sensation itself, or in the external qualities suggested by it. Habit, for instance, will never cause a person to mistake gentian or quassia for sugar, but it may induce an appetite or liking for what is bitter, and a disgust for what is sweet. No person perhaps was originally delighted with the taste of opium or tobacco, they must at first be highly disgusting to most people; but custom not only reconciles the taste to them, but they become grateful, and even necessary.
Almost every species of sensation becomes grateful or otherwise, according to the force of the impression; for there is no sensation so pleasant, but, that, by increasing its intensity, it will become ungrateful, and at length intolerable. And, on the contrary, there are many which on account of their force are naturally unpleasant, but become, when diminished, highly pleasant. The softest and sweetest sounds may be increased to such a degree as to be extremely unpleasant: and when we are in the steeple of a church, the noise of a peal of bells stuns and confounds our senses, while at a distance their effect is very pleasant. The smell of musk likewise at a distance, and in small quantity, is pleasant; but when brought near, or in large quantity, it becomes highly disagreable. The same may be observed with respect to the objects of the other senses.
For a similar reason, many sensations which are at first pleasing, cease to delight by frequent repetition; though the impression remains the same. This is so well known that illustrations are unnecessary. Those who are economical of their pleasures, or who wish them to be permanent, must not repeat them too frequently. In music, a constant repetition of the sweetest and fullest chords, cloys the ear; while a judicious mixture of them with tones less harmonious will be long relished. Those who are best acquainted with the human heart need not be told, that this observation is not confined to music.
On the same principle likewise we can account for the pleasure afforded by objects that are new; and why variety is the source of so many pleasures; why we gradually wish for an increase in the force of the impression in proportion to its continuance.
The pleasures of the senses are confined within narrow limits, and can neither be much increased nor too often repeated, without being destructive of themselves; thus we are admonished by nature, that our constitutions were not formed to bear the continual pleasures of sense; for the too free use of any of them, is not only destructive of itself, but induces those painful and languid sensations so often complained of by the voluptuary, and which not unfrequently produce a state of mind that prompts to suicide.
As the transition from pleasure to pain is natural, so the remission of pain, particularly if it is great, becomes a source of pleasure. There is much truth, therefore, in the beautiful allegory of Socrates, who tells us, that Pleasure and Pain were sisters, who, however, met with a very different reception by mankind on their visit to the earth; the former being universally courted, while the latter was carefully avoided: on this account, Pain petitioned Jupiter, who decreed that they should not be parted; and that whoever embraced the one, obtained also the other.
There is a great diversity with respect to the duration of the pleasures of the different senses: some of the senses become soon fatigued, and lose the power of distinguishing accurately their different objects: others, on the contrary, remain perfect a long time. Thus smell and taste are soon satiated; hearing more slowly; while, of all the external senses, the objects of sight please us the longest. We may, however, prolong the pleasures of sense by varying them properly, and by a proper mixture of objects or circumstances which are indifferent, and afford less delight. But the very constitution of our nature limits our enjoyments, and points out the impossibility of perpetual pleasures in this state of our existence. To a person who is thirsty, water is delicious nectar; to one who is hungry, every kind of food is agreeable, and even its smell pleasant; to a person who is hot and feverish, the cool air is highly refreshing. But to the same persons in different circumstances, the same things are not only indifferent, but even disgusting; for instance, a person cannot bear the sight or smell of food, after having satiated himself with it, and perpetual feasting will cloy the appetite of the keenest epicure.
I shall conclude this account of the general laws of sensation, by a short recapitulation of those laws.
And, in the first place, it may be observed, that the energy or force of any sensation, is proportioned to the degree of attention given by the mind to the external object which causes it.
Secondly, A repetition of sensations diminishes their energy, and at last nearly destroys it; but this energy is restored by rest, or the absence of these sensations.
Thirdly, The mind cannot attend to two impressions at the same time: so that two sensations never act with the same force at the same instant; the stronger generally overcoming the weaker. The mind, however, can attend to the weaker sensation, in such a manner, as to overpower the stronger, or to render it insensible.
Having fully considered the general laws of sensation, I shall now proceed to examine those proper to each sense; and in this examination, two objects will engage our attention. 1. The structure of the organ which receives and transmits the impulse to the mind. 2. The qualities or properties of external bodies, particularly those by which they are fitted to excite sensation.
The first sense that we shall examine is touch, which, of all the external senses, is the most simple, as well as the most generally diffused. By means of this sense, we are capable of perceiving various qualities and properties of bodies, such as hardness, softness, roughness, smoothness, temperature, magnitude, figure, distance, pressure, and weight; this sense is seldom depraved; because the bodies, whose properties are examined by it, are applied immediately to the extremities of the nerves, without the intervention of any medium liable to be deranged, as is the case with the eye, and ear.
The organ of touch is seated chiefly in the skin, but different parts of this covering possess different degrees of sensibility. The skin consists of three parts. 1. The cutis vera, or true skin, which covers the greatest part of the surface of the body. When the skin is examined by a microscope, we find it composed of an infinite number of papillae, or small eminencies, which seem to be the extremities of nerves, each of which is accompanied by an artery and a vein, so that when the vessels of the skin are injected, the whole appears red. 2. Immediately over the true skin, and filling up its various inequalities, lies a mucous reticulated substance, which has been called by Malpighi, who first described it, rete mucosum. The real skin is white in the inhabitants of every climate; but the rete mucosum is of various colours, being white in Europeans, olive in Asiatics, black in Africans, and copper coloured in Americans. This variety depends chiefly on the degree of light and heat; for, if we were to take a globe, and paint a portion of it with the colour of the inhabitants of corresponding latitudes, we should have an uniform gradation of shade, deepening from the pole to the equator.
The diversity of colour depends upon the bleaching power of the oxygen, which, in temperate climates, combines more completely with the carbonaceous matter deposited in the rete mucosum; while, in hotter climates, the oxygen is kept in a gaseous state by the heat and light, and has less tendency to unite with the carbonaceous matter. In proof of this, the skins of Africans may be rendered white by exposure to the oxygneated muriatic acid.
Over the rete mucosum is spread a fine transparent membrane, called the cuticle, or scarf skin, which defends the organ of feeling from the action of the air, and other things which would irritate it too powerfully. In some parts of the body this membrane is very thick, as in the soles of the feet, and palms of the hands; and this thickness is much increased by use and pressure.
In general, the thinner the cuticle is, the more acute is the sense of touch. This sense is very acute and delicate about the ends of the fingers, where we have the most need of it; but in the lips, mouth, and tongue, it is still more delicate; a galvanic or electrical shock being felt by the tongue, when it is impossible for us to perceive it by the fingers.
This sense, like the others, becomes more exquisite when its organ is defended from the action of external bodies; it is on this account that the cuticle becomes so sensible under the end of the nail, which defends it from the action of external objects; and when part of the nail is taken away, we can scarcely bear to touch any thing with this newly exposed part of the skin.
When we place our fingers upon the surface of any body, the first sensation we experience is that of resistance, after which the other properties are perceived in a natural order; such as heat or cold, moisture or dryness, motion or rest, distance, and figure or shape.
With respect to the diseases of this sense, it is very seldom that it becomes too acute over the whole body; though it frequently does so in particular parts, which may arise from the cuticle being too thin or abraded, or from an inflamed state of the part.
It however becomes sometimes obtuse, and indeed almost abolished over the whole body; and this takes place from compression of the brain, and various affections of the nervous power. This diminution is called anaesthesia. The touch becomes deficient, and indeed almost abolished, when the cuticle is injured by the frequent application of hot bodies, or acrid substances: thus the cuticle of the hands of blacksmiths and glassblowers is generally so hard and horny, that they can take up and grasp in their hand pieces of redhot iron with impunity.
We generally refer pain to this sense, though it may arise from too violent an impression made upon any of the organs of sense.
Pain is an unpleasant sensation, which the mind refers to some part of the body, and very accurately, if any part of the surface is affected, but less so, if it arises from the affection of an internal part. The sensation of pain may arise from any thing which tends to injure the structure of the body, whether that be internal or external; so that it serves as a monitor to put us on our guard, and to induce us to remove any thing which might be injurious to us. This sensation is produced by any thing which punctures, cuts, tears, distends, compresses, bruises, corrodes, burns, or violently stimulates any part of the body.
A moderate degree of pain in any part excites the action of the whole body; a greater quantity of blood and nervous energy is determined to the part. A still greater degree of pain brings on inflammation and its consequences, and if it be intense, it will bring on fever, convulsions, delirium, fainting, and even death.
The endurance of pain depends much on the strength of mind possessed by the patient, which, in some instances, is such, that the most violent pains are patiently endured; while in other instances, the slightest can scarcely be born.
It is a curious circumstance, that a moderate degree of pain, when unaccompanied by fever, often tends to render the understanding more clear, lively, and active. This is confirmed by the experience of people labouring under gout. We have an account of a man who possessed very ordinary powers of understanding, but who exhibited the strongest marks of intelligence and genius in consequence of a severe blow on the head; but that he lost these powers when he recovered from the effects of the blow. Pechlin mentions a young man, who during a complaint originating from worms, possessed an astonishing memory and lively imagination, both of which he nearly lost by being cured. Haller mentions a man who was able to see in the night, while his eyes were inflamed, but lost this power as he got well. All these facts show, that a certain action or energy is necessary for the performance of any of the functions of the body or mind; and whatever increases this action will, within certain limits, increase those functions.
Feeling is by far the most useful, extensive, and important of the senses, and may be said indeed to be the basis of them all. Vision would be of very little use to us, if it were not aided by the sense of feeling; we shall afterwards see that the same observation may be applied to the other senses. In short, it is to this sense that we are indebted, either immediately or indirectly, for by far the greatest part of our knowledge; for without it we should not be able to procure any idea with respect to the magnitude, distance, shape, heat, hardness or softness, asperity or smoothness of bodies; indeed, if we were deprived of this sense, it is difficult to say whether we should have any idea of the existence of any external bodies; on the contrary, it seems probable that we should not.
From the sense of touch we proceed naturally to that of taste, for there seems to be less difference between these two senses than between any of the others. The sense of taste appears to be seated chiefly in the tongue; for any sweet substance, such as sugar, applied to any other part of the mouth, scarcely excites the least sensation of taste. The same may be observed with respect to any other sapid body, which, unless it is strongly acrid or irritating, produces no effect on any other part than the tongue; but if it is possessed of much acrimony, it then not only affects the palate, and uvula, but even the oesophagus.
The tongue is a muscular substance, placed in the mouth, connected by one end with the adjacent bones and cartilages, while the other end remains free, and easily moveable. The tongue is furnished, particularly on its upper surface, with innumerable nervous papillae, which are much larger than those I described as belonging to the skin. These papillae are of a conical figure, and extremely sensible, forming, without doubt, the true organ of taste; other papillae are found between them, which are partly conical, and partly cylindrical.
Over the papillae of the tongue is spread a single mucous, and semipellucid covering, which adheres firmly to them, and serves the purpose of a cuticle.
Under these papillae are spread the muscles which make up the fleshy part of the tongue: these are extremely numerous, and by their means the tongue possesses the power of performing a great variety of motions with surprising velocity.
The arteries leading to the tongue are extremely numerous; and, when injected with a red fluid, the whole substance appears of a beautiful red.
The tongue is likewise furnished with a large supply of nerves, some of which undoubtedly serve to supply its muscles with nervous energy, while others terminate in the papillae, and form the proper organ of taste: this office seems to be performed by the third branch of the fifth pair of nerves. The papillae, before described, are formed or composed of a number of small nerves, arteries, and veins, firmly united together by cellular substance. These papillae are excited to action by the application of any sapid body; in consequence of which they receive a greater supply of blood, become enlarged, and vastly more sensible.
The structure of the tongue differs in different animals, which likewise possess corresponding differences with respect to taste. In those quadrupeds, in which it is armed with sharp points, the sense of taste is by no means acute. The same is the case with birds and reptiles, whose tongues are very dry and rough.
In a former lecture I took notice of a liquor which is secreted by the glands of the mouth and neighbouring parts, which is called saliva. This liquor acts an important part in the production of taste; it does not differ much from water, excepting by containing a quantity of mucilage; and nothing is sapid, or capable of affecting the sense of taste, unless it is in some degree soluble in this liquor. Hence earthy substances, which are nearly insoluble, have little or no taste.
It is not, however, sufficient that the substance be possessed of solubility alone; it is necessary likewise that it should be possessed of saline properties, or, at least, of a kind of acrimony, which renders it capable of stimulating the nervous papillae. Hence it is that those substances which are less saline, and less acrid than the saliva, have no taste.
We are capable of distinguishing various kinds of taste, but some of them with less accuracy than others. Among the different kinds of taste, the following have been considered by Haller, and some other physiologists, as primitive: sweet, sour, bitter, and saline. The others have been thought to be compounded of these; for the sense of taste, as well as sight and hearing, is capable of perceiving compound impressions. To these primitive tastes, Boerhaave added alkaline, spirituous, aromatic, and some others. Of these, in different proportions, all the varieties of tastes, which are extremely numerous, are composed.
Some tastes are pleasant and agreeable, others disagreeable, and scarcely tolerable: there is, however, a great diversity in this respect experienced by different persons; for the same taste, which is highly grateful to some, is extremely unpleasant to others.
But the most pleasant tastes, agreeably to the general laws of sensation, which I described in the last lecture, become gradually less pleasant, and at last disgusting; while, on the contrary, the most disagreeable savours, such as tobacco, opium, and assafoetida, become, by custom, not only tolerable, but highly agreeable.
Nature designed this difference of tastes that we might know and distinguish such foods as are salutary; for we may in general observe, that no kind of food which is healthy, and affords proper nutriment to the body, is disagreeable to the taste; nor are any that are ill tasted proper for our nourishment. Those substances, therefore, which possess strong or disagreeable savours, and which, in general, possess a power of producing great changes on our constitution, are to be ranked as medicines, and only to be used when the constitution is deranged; whereas, in general, those which are pleasant, or mild tasted, are proper for nourishing the body. We are therefore excited or prompted to receive nourishment by the pleasant smell or taste of the food; but the avidity with which we take it depends much on the state of the stomach, and likewise on a certain inanition or emptiness; for the coarsest food is grateful to those who are hungry, and whose digestion is good; whereas, to those who have lately eaten, or whose digestive powers are impaired, the most delicate food affords little pleasure. While we are eating, the saliva flows into the mouth more copiously, which excites a more acute sensation of taste. This flow of saliva is likewise frequently excited by the smell or sight of substances agreeable to the taste, which causes an appetite, or desire of eating, similar to that caused by an accumulation of gastric juice in the stomach.
In brute animals, who have not, like ourselves, the advantage of learning from each other by instruction, the faculty of taste is much more acute, by which they are admonished to abstain from noxious or unhealthy food. This sense, for the same reason, is more acute in savages than in those who live in civiilsed society, which, whatever perfection it gives to the reasoning faculties of man, certainly diminishes the acuteness of all our senses, partly by affording fewer inducements to exercise them, and partly by our manner of living, and by the application of substances to the organs of sense, which tend to vitiate them, and render them depraved.
Taste is modified by age, temperament, habit, and disease; and in this it obeys the general laws of sensation. Children are pleased with the taste of what is sweet, and little stimulating; as we advance in years the taste of more stimulating substances becomes agreeable to us; so that we are admonished by this sense to take into the stomach the kind of nourishment fitted to each period of life. We often, however, counteract this salutary monitor by depraving our sense of taste, by the too free use of vinous or spirituous liquors, which so far deadens the sense of taste, that sweet substances become unpleasant, and nothing but acrid and stimulating things can make an impression on our diminished and vitiated sense of taste.
This sense, as well as others, is liable to be diseased. In order that the sense may be perfect, it is necessary that the membrane which envelopes the nervous papillae of the tongue, and serves as a cuticle, should neither be too thick nor too thin, too dry nor too moist. It is necessary likewise that the qualities of the saliva be natural; for alterations in the nature of this liquor affect very much the sense of taste; if it is bitter, which sometimes happens in bilious complaints, all kinds of food have a bitter taste; if it is sweet, the food has a faint and unpleasant flavour; and if it is acid, the food too tastes sour.
This sense is seldom observed to be too acute, unless from a vitiated state of the cuticle, or membrane, which covers the tongue: if this has been abraded or ulcerated, then the substances applied to the tongue are more sensibly tasted; in many instances, however, they do not produce an increased sensation of taste, but only of pain.
The sense of taste, as well as of touch, may become deficient, from various affections of the brain and nerves; this, however, is not often the case. Some persons have naturally a diminished sense of taste, and this generally accompanies a diminished sense of smell. This sense is frequently diminished in sensibility from a deficiency of saliva, as well as of the proper moisture of the tongue. Hence, in many diseases, it becomes defective, such as fevers, colds, and the like; both from a want of the proper degree of moisture, and from defect of appetite, which, as was before observed, is necessary to the sense of taste.
The sense of taste is often diminished by a thickened mucous covering of the tongue, which prevents the application of substances to its nervous papillae. This mucous covering arises from a disordered state of the stomach, as well as from several other affections of the body: hence physicians inspect the tongue, that they may be able to judge of the general state of the body; and next to the pulse, it is undoubtedly the best criterion that we have, as it not only points out the nature and degree of several fevers, but likewise, in many instances, the degree of danger to be apprehended.
Having examined the sense of taste, I shall now proceed to consider that of smell; the use of which, like taste, is to enable us to distinguish unwholesome from salutary food; indeed, by this sense, we are taught to avoid what is prejudicial before it reaches the sense of taste, to which it might be very injurious; and thus we are enabled to avoid any thing which has a putrid tendency, which, if received into the stomach, would taint the whole mass of fluids, and bring on speedy dissolution.
The seat of this sense is a soft pulpy membrane, full of pores, and small vessels, which lines the whole internal cavity of the nose. On this membrane are distributed abundance of soft nerves, which arise chiefly from an expansion of the first pair of nerves coming from the brain. This membrane is likewise plentifully supplied with arteries; so that by means of this nervous and arterial apparatus, this membrane is possessed of very great sensibility; but the nerves of the nose being almost naked, require a defence from the air, which is continually drawn through the nostrils into the lungs, and forced out again by respiration. Nature has therefore supplied this part with a thick insipid mucus, very fluid at its first separation, but gradually thickening, as it combines with oxygen, into a dry crust, approaching often to a membranous matter. This mucus is poured out, or exhaled, by the numerous minute arteries of the nostrils, and serves to keep the nervous apparatus moist, and in a proper state for receiving impressions, as well as to prevent the violent effects which might arise from the stimulus of the air and other bodies. The sense of smell is the most acute about the middle of the septum of the nose, where the nervous membrane which I have described is thicker and softer, than in the cavities more deeply situated, where it is less nervous and vascular. These parts are not however destitute of the sense.
As taste proceeds from the action of the soluble parts of bodies on the nervous papillae of the tongue, so smell is occasioned by minute and volatile particles flying off from bodies, which become mixed with the air, and drawn up with it into the nostrils, where these small particles stimulate or act upon the nerves before described, and produce the sensation which we call smelling.
The air therefore, being loaded with the subtile and invisible effluvia of bodies, is, by the powers of respiration, drawn through the nose, so as to apply these particles to the almost naked olfactory nerves, which, as was before observed, excites the sense of smelling. When we wish to smell accurately, we shut the mouth, open the nostrils as wide as possible, and making a strong inhalation, draw up a greater number of these volatile particles, than could be drawn up by the common action of respiration, by which means the olfactory nerves are more stimulated, and produce a stronger sensation.
In order that this sense may be enjoyed in perfection, it is necessary that the organ of smell be in a proper state or condition to receive impressions, and that the odorous bodies be likewise in a proper state. With respect to the first, it is necessary that the state of the nerves be sound, and particularly that they be kept in a proper state with respect to moisture.
With regard to the odorous bodies, it is necessary, first, that their minute particles should be disengaged, either by heat, friction, fermentation, or other means capable of decomposing those bodies which are the subjects of smell: secondly, that they may be capable of assuming the vaporous or gaseous state, by combining with caloric, or at any rate, that they should remain for a certain time dissolved or suspended in the air: thirdly, that they should not meet with any substance in their way to the nostrils, which is capable of neutralising them, or altering their properties by its chemical action.
Notwithstanding all the pains which physiologists have taken to detect the nature of odorous bodies, they have met with but little success. They are so extremely minute as to escape the other senses, and we can only say that they must be composed of particles in an extreme state of division and subtilty, because very small quantities of odorous matter exhale a sufficient quantity of particles to fill a large space. A grain of camphor, musk, or amber exhales an odour which penetrates every part of a large apartment, and which remains for a long time.
There is perhaps no substance in nature which is absolutely incapable of being changed from a solid state into that of a fluid or gas, by combining with caloric; though different substances require very different quantities of heat to produce those effects. Those which are with difficulty converted into fluids or gases, are termed fixed, while those which are easily changed are called volatile; though these are only terms of comparison, for there is probably no body which is absolutely fixed, or incapable of being reduced to vapour by the application of a sufficient degree of heat.
The odorous property is probably as general as that of being convertible into gas. There is perhaps no body so hard, compact, and apparently inodorous, as to be absolutely incapable of exciting smell by proper methods: two pieces of flint rubbed together, produce a very perceptible smell. Metals which appear nearly inodorous, excite a sensation of smell by friction, particularly lead, tin, iron, and copper. Even gold, antimony, bismuth, and arsenic, under particular circumstances, give out peculiar and powerful odours. The odour of arsenic in its metallic state, and in a state of vapour, resembles that of garlic. The chief means of developing the odorous principles are friction, heat, electricity, fermentation, solution, and mixture. The effect of mixture is very remarkable in the case of lime and muriate of ammoniac, neither of which, before mixture, has any perceptible odour.
There is perhaps then no body which is perfectly inodorous, or entirely destitute of smell: for those which have been generally accounted such, may be rendered odorous by some of the methods I have mentioned.
Several naturalists and physiologists, such as Haller, Linneus, and Lorri, have attempted to reduce the different kinds of odours to classes, but without any great success; for we are by no means so well acquainted with the physical nature of the odorous particles, as we are with that of light, sound, and the objects of touch; and till we do obtain a knowledge of these circumstances, which perhaps we never shall, it will be in vain to attempt any accurate classification. The division of them into odours peculiar to the different kingdoms, is very inaccurate; for the odour of musk, which is thought to be peculiarly an animal odour, is developed in the solution of gold by some mineral solvents; it is perceptible in the leaves of the geranium moschatum, and some other vegetables. The smell of garlic is possessed by many vegetables, by arsenic, and by toads. The violet smell is perceived in some salts, and in the urine of persons who have taken turpentine. The same may be observed with respect to several other odours.
As taste keeps guard, or watches over the passage by which food enters the body, so smell is placed as a sentinel at the entrance of the air passage, and prevents any thing noxious from being received into the lungs by this passage, which is always open. Besides, by this sense, we are invited or induced, to eat salutary food, and to avoid such as is corrupted, putrid, or rancid. The influence of the sense of smell on the animal machine is still more extensive: when a substance which powerfully affects the olfactory nerves is applied to the nostrils, it excites, in a wonderful manner, the whole nervous system, and produces greater effects in an instant, than the most powerful cordials or stimulants received by the mouth would produce in a considerable space of time. Hence in syncope or fainting, in order to restore the action of the body, we apply volatile alkali, or other strong odorous substances, to the nostrils, and with the greatest effect. It may indeed for some time supply the place, and produce the effects, of solid nutriment usually received into the stomach We are told that Democritus supported his expiring life, and retarded, for three days, the hour of death, by inhaling the smell of hot bread, when he could not take nutriment by the stomach. Bacon likewise gives us an account of a man who lived a considerable time without meat or drink, and who appeared to be nourished by the odour of different plants, among which were garlic, onions, and others which had a powerful smell. In short, the stimulus which active and pleasant odours give to the nerves, seems to animate the whole frame; and to increase all the senses, internal and external.
The perfection of the organ of smell is different in different animals; some possessing it very acutely; others on the contrary having scarcely any sense of smell. We may in general observe that this sense is much more acute in many quadrupeds than in man: an in them the organ is much more extensive: in man, from the shape of the head, little opportunity is given for extending this organ, without greatly disfiguring the face. In the dog, the horse, and many other quadrupeds, the upper jaw being large, and full of cavities, much more extension is given to the membrane which is the organ of smell, which in some animals is beautifully plaited, in order to give it more surface. Hence a dog is capable of following game, or of tracing his master in a crowd, or in a road where it could not be done by the mere track. Nay, we are told of a pickpocket being discovered in a crowd, by a dog who was seeking its master, and who was directed to the man by the pocket handkerchief of his master, which the pickpocket had stolen. In dogs the sense of smell must be uncommonly delicate, to enable them to distinguish the way their master has gone in a crowded city.
The habit of living in society, however, deadens this sense in man as well as taste; for we have the advantage of learning the properties of bodies from each other by instruction, and have therefore less occasion to exercise this sense; and the less any sense is exercised, the less acute will it become; hence it is, that those whom necessity does not oblige to to exercise their senses and mental faculties, and who have nothing to do but lounge about, and consume the fruits of the earth, become half blind, half deaf, and, in general, have great deficiency in the sense of smell. The use of spirituous liquors, and particularly of tobacco in the form of snuff, serves likewise in a remarkable manner to deaden this sense.
Savages, however, who are continually obliged to exercise all their senses, have this, as well as others, in very great perfection. Their smell is so delicate and perfect, that it approaches to that of dogs. Soemmering and Blumenbach indeed assert, that in Africans and Americans the nostrils are more extended, and the cavities in the bones lined with the olfactory membrane much larger than in Europeans.
I have already observed the powerful effects which some odours have upon the nervous system. There are some which agreeably excite it, and produce a pleasant and active state of the mind, while others, on the contrary, produce the most terrible convulsions, and even fainting. Those particular antipathies with respect to smells, arise sometimes from something in the original constitution of the body, with which we are unacquainted, but generally from the senses having been powerfully and unpleasantly affected by certain odours at an early period of life. The latter may often be cured by resolution and perseverance, but the former cannot.
The sense of smell sometimes becomes too acute, either from a vitiated state of the organ itself, which is not often the case; or from an increased sensibility or irritability of the whole nervous system, which is observed in hysteria, phrenitis, and some fevers.
This sense is however more often found deficient; and this may arise from a fault in the brain or nerves, which may either proceed from external violence, or from internal causes. A defect of smell often arises from a vitiated state of the organ itself; for instance, if the nervous membrane is too dry, or covered with a thick mucus; of both of which we have an example in catarrh or common cold, where, at the beginning, the nostrils feel unusually dry, but as the disease advances, the pituitary membrane becomes covered with a thick mucus: in both states, the sense of smell is in general deficient, and sometimes nearly abolished.
This sense is sometimes depraved, and smells are perceived when no odorous substance is present; or odours are perceived to arise from substances, which are very different from those which we perceive in a sound state.
There are many diseases likewise of the nose, and neighbouring parts, which cause a depraved sensation; such as ulcers, cancer, caries; a diseased state of the mouth, teeth, throat, or lungs; or a vitiated state of the stomach, which sometimes exhales a vapour similar to that of sulphureted hydrogen. This sense likewise sometimes becomes depraved from a diseased state of the brain and nerves.
Having in the last lecture examined the senses of taste and smell, I now proceed to that of hearing. As the sense of smell enables us to distinguish the small particles of matter which fly off from the surfaces of bodies, and float in the air, so that of hearing makes us acquainted with the elastic tremors or impulses of the air itself.
The sense of hearing opens to us a wide field of pleasure, and though it is less extensive in its range than that of sight, yet it frequently surmounts obstacles that are impervious to the eye, and communicates information of the utmost importance, which would otherwise escape from and be lost to the mind.
Sound arises from a vibratory or tremulous motion produced by a stroke on a sounding body, which motion that body communicates to the surrounding medium, which carries the impression forwards to the ear, and there produces its sensation. In other words, sound is the sensation arising from the impression made by a sonorous body upon the air or some other medium, and carried along by either fluid to the ear.
Three things are necessary to the production of sound; first, a sonorous body to give the impression; secondly, a medium or vehicle to convey this impression; thirdly, an organ of sense or ear to perceive it. Each of these I shall separately examine.
Strictly speaking, sonorous bodies are those whose sounds are distinct, of some duration, and which may be compared with each other, such as those of a bell or a musical string, and not such as give a confused noise, like that made by a stone falling on the pavement. To be sonorous, a body must be elastic, so that the tremors exerted by it in the air may be continued for some time: it must be a body whose parts are capable of a vibratory motion when forcibly struck.
All hard bodies, when struck return more or less of a sound; but those which are destitute of elasticity, give no repetition of the sound; the noise is at once produced and dies; while other bodies, which are more elastic and capable of vibration, repeat the sounds produced several times successively. These last are said to have a tone; the others are not allowed to have any. If we wish to give nonelastic bodies a tone, it will be necessary to make them continue their sound, by repeating our blows quickly upon them. This will effectually give them a tone; and an unmusical instrument has often by this means a fine effect in concerts. The effects of a drum depend upon this principle. Gold, silver, copper, and iron, which are elastic metals, are sonorous; but lead, which possesses scarcely any elasticity, produces little or no tone. Tin, which in itself has very little more sound than lead, highly improves the tone of copper when mixed with it. Bell metal is formed of ten parts of copper, and one of tin. Each of these is ductile when separate, though tin is only so in a small degree, yet they form when united a substance almost as brittle as glass, and highly elastic. So curious is the power of tin in this respect, that even the vapour of it, when in fusion, will give brittleness to gold and silver, the most ductile of all metals. Sonorous bodies may be divided into three classes; first, bells of various figures and magnitudes: of these such as are formed of glass have the most pure and elegant tones, glass being very elastic, and its sound very powerful; secondly, pipes of wood or metal; thirdly, strings formed either of metallic or animal substances. The sounds given by strings are more grave or more acute according to the thickness, length, and tension of the strings.
Air is universally allowed to be the ordinary medium of sound, or the medium by which sounds are propagated from sonorous bodies, and communicated to the ear. This may be shown by an experiment with the air pump; also with the condenser.
But though air is the general vehicle of sound, yet sound will go where no air can convey it; thus the scratching of a pin at the end of a long piece of timber may be heard by an ear applied at the other end, though it could not be heard at the same distance through the air. On this account it is that sentinels are accustomed to lay their ears to the ground, by which means they can often discover the approach of cavalry, at a much greater distance than they can see them.
For the same reason two stones being struck together under water, may be heard at a much greater distance by an ear placed under water likewise, than it can be heard through the air. Dr. Franklin, who several times made this experiment, thinks that he has heard it at a greater distance than a mile. This shows that water is better adapted to convey sound than air.
When an elastic body is struck, that body, or some part of it, is made to vibrate. This is evident to sense in the string of a violin or harpsichord, for we may perceive by the eye, or feel by the hand, the trembling of the strings, when by striking they are made to sound. If a bell be struck by a clapper on the inside, the bell is made to vibrate. The base, of the bell, is a circle, but it has been found that by striking any part of this circle on the inside, that part flies out, so that the diameter which passes through this part of the base will be longer than the other diameter. The base, by the stroke, is changed into an ellipse or oval, whose longer axis passes through the part against which the clapper is struck. The elasticity of the bell restores the figure of the base, and makes that part which was forced out of its place, return back to its former situation, from which the same principle throws it out again; so that the circular figure of the bell will be again changed to an ellipse, only now the shorter axis will pass through the part which was first struck.
The same stroke, which makes the bell vibrate, occasions the sound, and as the vibrations decay, the sound grows weaker. We may be convinced by our senses that the parts of the bell are in a vibratory motion while it sounds. If we lay the hand gently on it, we shall easily feel this tremulous motion, and even be able to stop it, or if small pieces of paper be put upon the bell, its vibrations will put them in motion.
These vibrations in the sounding body will cause undulations or waves in the air; and, as the motions of one fluid may often be illustrated by those of another, the invisible motions of the air have been properly enough compared to the visible waves of water produced by throwing a stone therein. These waves spread themselves in all directions in concentric circles, whose common centre is the spot where the stone fell, and when they strike against a bank or other obstacle, they return in the contrary direction to the place from whence they proceeded. Sound in like manner expands in every direction, and the extent of its progress is in proportion to the impulse on the vibrating chord or bell.
Such is the yielding nature of fluids, that when other waves are generated near the first waves, and others again near these, they will perform their vibrations among each other without interruption; those that are coming back will pass by those that are going forwards, or even through them, without interruption: for instance, if we throw a stone into a pond, and immediately after that, another, and then a third, we shall perceive that their respective circles will proceed without interruption, and strike the banks in regular succession.
The atmosphere in the same manner possesses the faculty of conveying sounds in the most rapid succession or combination, as distinctly as they were produced. It possesses the power not only of receiving and propagating simple and compound vibrations in direct lines from the voice, or an instrument, but of retaining and repeating sounds with equal fidelity after repeated reflection and reverberation, as is evident from the sound of a French horn among hills.
Newton was the first who attempted to demonstrate that the waves or pulses of the air are propagated in all directions round a sounding body, and that during their progress and regress they are twice accelerated and twice retarded, according to the law of a pendulum vibrating in a cycloid. These propositions are the foundation of almost all our reasoning concerning sound. When sonorous bodies are struck, they, by their vibration, excite waves in the air, similar to those caused by a stone thrown into water; some parts of these waves entering the ear, produce in us that sensation which we call sound. How these pulsations act upon the auditory nerve, to produce sound, we know not, as we see no necessary connexion between the pulses and the sensation, nor the least resemblance between them; but we can trace their progress to a certain extent, which I shall now endeavour to do.
The external part of the ear is called the auricle, or outward ear, which is a cartilaginous funnel, connected to the bones of the temple, by means of cellular substance, and likewise by its own proper ligaments and muscles. This cartilage is of a very compound figure, being a kind of oval, marked with spirals standing up, and hollows interposed, to which other hollows and ridges correspond on the opposite side. The outer eminence is called helix. Within the body of the cartilage arises a forked eminence called antihelix, which terminates in a small and short tongue called antitragus. The remaining part of the ear, called the concha or shell, is anteriorly hollow, but posteriorly convex, growing gradually deeper; with a crooked line or ridge running along its middle, which is immediately joined to the meatus auditorius, or entrance into the ear; before which stands a round moveable appendix, which serves as a defense, called tragus.