CHAPTER VII.SLEDGES AND SLEDGE TRAVELLING.

GUNNER’S CAPSTAN.

GUNNER’S CAPSTAN.

The gunner’s capstan is made by sinking one end of a waggon or gun axle in the ground, placing a wheel on it upside down, and lashing handspikes to the spokes to act as capstan bars. The rope to be hove on is passed round the nave of the wheel below the line of the spokes, as shown in the annexed illustration.

Anchors.

MAKESHIFT ANCHORS.

MAKESHIFT ANCHORS.

In many countries where navigation is not very far advanced, wooden anchors are commonly used. We have seen and sketched these on the coast of Java, and elsewhere. In tropical countries the hard heavy wood that sinks of its own weight is peculiarly suited for this. A forked tree of suitable size is chosen, and sometimes, but not always, the fork or fluke of the anchor is strengthened by a cross lashing to the shank. A heavy stone, as long as possible in proportion to its thickness, is lashed across underneath the shank, serving the purpose of a stock. A loop for the attachment of the cable is made above it, so that the anchor, when cleared for letting go, may hang in the position shown in Fig. 1, and may take the ground fluke downward. A many-forked tree of heavy wood, with stones lashed on (Fig. 2) for additional weight, is more certain to hold, but does not stow so snugly when not in use. This, in a lighter form, may be used as a creeper for dragging over the bottom to recover a lost cable, &c. Canoes, in shallow, sluggish waters, are often moored by one or more of their poles stuck into the mud. A stone lashed to one of these and a guy carried aft, as in Fig. 3, will give additional security; or a couple of poles may be put over the sides and crossed under the bottom, the lower ends being guyed in the same manner, but this would be dangerous in a strong tide-way. If the boat is dropping down with the tide, a pole over the stern, about a foot longer than her draught of water, will take the ground and either prevent her running ashore or at least give warning before she does so. Where heavy wood cannot be obtained, a couple of holes may be bored in a slab of sandstone (Fig. 4), the ends of a forked branch thrust through and forelocked, another stone being jammed into the fork at right angles with the first. We have often seen anchors of this description in use among Indians.

BORING WITH SLINGER STICKS.

BORING WITH SLINGER STICKS.

Working in timber.

A pump, or nave auger, may be advantageously worked with what are called “slinger sticks.” Set the log upright, either in a hole in the ground by shoring it, or by a combination of both methods. Above it rig a stage, on the forks of trees, with a firm socket for the stock or shaft of your auger to work in. Then fit a waggon wheel on the top of it,lashan upright pin to one of the felloes (do not spoil agoodwheel by boring holes in it). The sticks have broad, flat ends, with holes to work upon the pivot, and crutch handles for the men to take hold of. In some parts of the Indian Archipelago even gun barrels are bored out in nearly similar fashion, only two boys walk slowly round with a kind of capstan bar, the drill being weighted with a basket of stones.

THE TREATMENT OF TIMBER BY STEAM AND SAW.

THE TREATMENT OF TIMBER BY STEAM AND SAW.

Saws and drills.

STOCKS AND DRILLS.

STOCKS AND DRILLS.

We have seen Africans, in Portuguese service, working a common handsaw very efficiently by fixing a cross handle to the end of the blade; then two men would sit opposite each other, and holding the log between the soles of their feet, as shown in the full page illustration, would work the saw between them. For rough work this serves well enough. In such case let them have a saw with teeth widely set, and pretty much their own way; but if you want anything well done do it yourself. Saws for natives need not have much temper, and the teeth should be set very wide, so as to do a great deal of what carpenters call “sawing wood.” The Germans are very fond of using frame saws, like that shown in the same illustration—a long, narrow strip of soft steel, stretched tightly in a heavy rectangular frame of wood. Such a saw could be extemporised with a few feet of iron hooping, with teeth filed on it. It would do for soft wood, but on hard wood would wear out quickly; nevertheless, it might last long enough to do the required work. We had three small web-saws, assorted sizes; they are veryhandy to carry, frames (like that in our full page illustration—“Boat building at Logier Hill”) are easily made when wanted, and they should not be neglected if weight or bulk in carriage is objectionable. Stock and bow drills may be easily made, as in Fig. 1. The arm of a tree will afford a socket above, and the wood or iron to be bored must be firmly fixed below; a good sized disc of heavy wood, the sheave say of an old block, or a piece sawed off a hard tree, acts as a fly wheel. For smaller work a cotton reel (Fig. 2) does well for the bow strings to work on; in this case the stock ought to be of iron, purchased at home. The Bowditch islanders lash their drill on alongside the stock (Fig. 3), but we can hardly sanction this plan, though it might exceptionally prove useful. If weight and not rapid motion is desired, make the drill stock of a heavy log (Fig. 4), with the pivot going up through the upper socket, and fit a crank on it.

HOOPING AND BUCKETING OF CASKS.

HOOPING AND BUCKETING OF CASKS.

Coopers’ work.

We have had at times not actually to make casksab initio, but what comes to very nearly the same thing, to pick out the materials of old ones “shaken out,” when we abandoned a camp, to tie them in bundles, and carry them as best we could till they were again required. Sometimes it is impossible to gather all the individual parts of one cask, and heads and staves must be taken as they come. In this case, pick out two heads of the same size, or pieces which will make two. Measure their diameter, and as the circumference is, for practical purposes, three times as much, measure across the ends of the staves on the inside of the chine groove, until their united widths fully equal three times the diameter. If you have another cask a little larger, set up the staves inside it; or if you have one somewhat smaller, arrange them outside, and put on temporarily a larger hoop, or lash them with a turn or two of rope. Then take the hoops which you have selected for the cask,and get the larger ones over the end, drive them down tolerably tight, nearly to the centre. Then, taking one of the heads, bore a couple of gimlets into it to hold it by, or screw on it a clamp, across the grain, so as to hold all its pieces fair and level. Let this down edgewise into the belly of the cask, then, drawing it up, enter one edge of it into the chine groove, and, slacking the hoops if necessary, lift it till it fits in all round. If you find any difficulty in this, take a knife blade, or thin piece of hoop iron, pass it through one of the interstices of the staves under the head, and lift it till it enters the groove. If this is done at the four quarters, it will be impossible for the head to fall down inside. Drive the lower hoops down, and when the staves begin to close up, take out the knife or hoop iron and tighten the hoops with the hammer and driver. Then turn up the cask, and if you wish to close it at once, do the same with the other end, if not, drive the hoops on leaving it open, and slack them up when you want to put the head in. Put knives or thin iron between the staves, as before, to keep the head from slipping down, and withdraw them before you tighten up. If you have not another cask to set up the staves in or upon, take one of the hoops and support it as a horizontal ring by tying it to small trees or posts, or set up the head itself on a pole, breast high, for the staves to lean against, or dig a circular trench a few inches deep in the ground to set the staves in. Remember that if iron hoops are worn or rusted or bent much, and have to be straightened out, they are very easily broken or burst by driving too tightly. Of course they can be mended by punching holes and riveting a piece in; but they require good punches and a matrix, for which a piece of hardened wood may be substituted, and some skill and patience. Always heat both the iron and rivets, and do not punch holes or clench rivets cold. Wooden hoops are generally withies or saplings, split downthe middle, and left with one flat side and one round. The ends are thinned a little, and notches cut on the upper edge of one and the lower of the other. These are made to catch each other, either with a short overlap, as in Fig. 1, in which case the two parts lie parallel with each other, or with a long joint (Fig. 2), in which each takes a half turn round the other, between the notches. The joint is then served either with slips of osier or split rattan, or other substitute for cord.

If it is necessary to make a cask, the pieces forming the discs used for the heads should be dowelled together, with a bit of pith of reed, or other caulking material between them, and the circumference must be thinned off to an obtuse edge. The staves, to look neat, ought to be nicely rounded as segments of a circle, and the ends should be narrower than the centre if belly is to be given to the cask; but if it is not essential that the cask should be perfectly round, the staves may be of flat plank. It is, however, indispensable that their edges should be cut to the proper angle, or they will not fit closely nor support each other when hooped up; the diagram we give will facilitate this. If there are to be 20 staves in a cask their edges must be cut at an angle of 18°, thus 360 divided by 20 is 18, and the angle of any other number may be found by dividing 360 by the number of staves. The chine groove may be cut with a saw, and it is better that the staves should be always a little narrower at the ends than in the middle, so that the hoops may tighten in being driven on.

Water casks, to embark.

To becket a cask, slacken off one or more of the hoops, take a strip of raw hide, slip one end under, twist the middle a little, then turn it, slip the other end under, nick them that they may not draw out, and tighten up the hoop. A kind-hearted American, captain of the “Mechanic,” of Boston, who filled our water casks when we were on scant allowance, off the coast of Australia, taught us this expedient. In towing a number of casks from shore to the vessel becket them in this manner at both ends, and on two sides; then put them end to end, and pass a rope on each side through all the beckets. If there are two boats let one tow ahead of the other, so as to leave but one wake; let the bung-hole bedownward, for if the cask leak, the salt water being heaviest, will not run up into the fresh, nor will the fresh rundown into the salt; whereas, if the bung is up, the fresh water may splash out and the water of the sea run in and spoil the remaining contents.

making hoops

Bent wood.

Hoops may be made by taking thin strips of any flexible wood, three or four times as long as the circumference of the required hoop, coiling them as it were, and then binding or clenching them together. These are very strong and flexible (Fig. 3). Jib stay hanks (Figs. 1 and 2) are made of any tough wood, in bars 14in. or 16in. long, 1in. wide, and a little more than ½in. thick at one edge, and somewhat less at the other. These are notched about 2in. from the ends, so that when they are bent the ends may cross each other and afford a hold for the lashing that attaches them to the leach of the sail. They are not fastened as the sailor opens them to put them on the stay, and the lashing to the leach rope fastens them sufficiently. Hanks may be made of the fork of a branch (Figs. 4, 6 and 7), and if a double hank is required, a branch with two forks (Fig. 5) will serve the purpose.

South American stirrups

In South America stirrups are very neatly made by taking a bar of tough wood (Fig. 1), 1ft. or 14in. long, notching it so as to leave in the centre a piece of the full thickness 4in. long, and leaving the ends of the full thickness, thinning down from them to the notch on each side till the wood can be safely turned up so that the ends meet and form the bow of the stirrup (Fig. 2). The ends are cut to the proper bevel, and fastened by a thong in a hole bored through them. A couple of horizontal bars, 2in. long, fastened above, form a slip for the stirrup leather to pass through. This is a very neat arrangement, butits only fault is its extreme lightness, as, when the horse is in rapid motion, the foot cannot readily find the stirrup if it should be lost for a moment. In this respect, the block of wood, sometimes richly carved and ornamented, used by the Chilians (Fig. 3), is, notwithstanding its clumsy appearance, far superior. Three bars, so lashed as to form an equilateral triangle of at least 5in. inner measurement, will make a good stirrup. The fork of a branch, with a cross piece lashed on it, or suspended so that one of its arms forms the tread or bottom piece, a thong of hide making the other side of the triangle, will answer if sufficiently heavy. The hide of the hippopotamus, rhinoceros, or giraffe, when sufficiently dried, may be cut into stirrups, and left to harden. Sometimes the block which forms the stirrup is cut with a projecting spike to form a spur; but the Mexican wooden spurs, consisting of two sticks a little thicker than a pencil, 4in. long, armed with small iron points, and provided with straps as in Fig. 4, are about the neatest and most easily extemporised form we know.

Makeshift axes or adzes.

Among the native tribes of South Africa, where iron, owing to the small scale on which they smelt it, is very scarce and valuable, considerable ingenuity is shown in the mounting of an axe blade. This is generally a triangular piece of iron, with one of its sides thinned down and ground to a rounded edge, and the other two tapered to a spike. It is well known that weight is an essential quality in all chopping instruments, and the deficiency of iron has therefore to be made up with wood. A stout branch, with another projecting from it at an angle of from 70° to 80°, is so cut as to leave a block of the larger limb attached like a mallet head to the smaller one, as in the uppermost figure of our illustration (p. 382). The spike of the axe head is made red hot, a hole is bored through the knob in the direction of the grain, and the axe is ready for use, and has besides the advantage of being convertible into an adze by simply taking out the iron and inserting it again athwart the hole instead of keeping it parallel with the handle; the two lower figures will give a sufficiently good idea of this. We have seen these tools very efficiently wielded by honey hunters and by native woodsmen and carpenters, who, when tired ofwork, convert the axe handle into a pipe by taking out the iron, partially stopping the middle of the hole with a few green leaves, putting the tobacco into one end, and applying their broad lips to the other.

MAKESHIFT AXES OR ADZES

MAKESHIFT AXES OR ADZES

The other two figures represent the manner in which a broad chisel may be converted into a serviceable axe or adze, by smoothing off and channelling the front of the knob, and firmly lashing the chisel to it with raw hide either fore and aft or athwartships as required. A plane iron (p. 140) is often made to answer the same purpose. The hoes used by the women in Africa are made in nearly the same manner as the axes, but larger; sometimes they are flat, thin, and oval; sometimes chisel or adze shaped; and sometimes a gouge like form is given to the blade, but in all cases a spike is left at the top for insertion into the heavy knob of the handle. At times this knob is cut where two branches project from it, so as to form a double-handled hoe, an example of which is shown in our engraving of a Bechuana hut on p. 281.

Hurdle or wattle work.

It may not be amiss here to give an example of the manner of making a piece of wattled work for a door, a window shutter, a table, a bedstead, or any other purpose. As many stakes as are required are planted firmly in the ground, either in a trench or, which is better, in holes separately made with a “grauwing” stick for the purpose. Rattans, osiers, twigs, reeds, or grass, are then wattled in in the manner shown in the sketch, their ends beingeither cut off, if they are not flexible enough to bend well, or returned round the outermost stake, and wattled in again if they are. In doing this, care must be taken not to draw the outermost stakes unduly together; and to prevent this it is a good plan to cut a strong stick, with a fork at one end and a notch like gaff jaws in the other, and set it between the stakes to keep them apart, removing it when it is necessary to put fresh wattles over the top, and replacing it when they are to be forced down. Baskets, crates, or gabions of any size, may be made by setting up squares or circles of stakes, and removing them when wattled; or houses may be built by fixing them more permanently and using them as the walls.

WATTLED WORK.

WATTLED WORK.

We have often admired the simplicity of the equipment of a Javanese ship carpenter; the ponderous maul or heavy axe and adze of our workman is unknown to him; all his tools, axe, adze, maul, hammer, and augers, are made so as to fit successively on one handle about 2ft. in length (seep. 44), and are carried in a canvas haversack slung upon his shoulder. We have seen, perhaps, a hundred Javanese workmen squatting about the decks and sides of our little schooner busy as bees, and tapping away like so many woodpeckers, where one-fourth the number of English carpenters could not have worked without injuring each other.

Blocks or pulleys.

The attention of the traveller is too seldom directed to blocks and tackle. These useful and unpretending economisers of labour are thought to belong to a ship, and therefore to be out of place on an inland journey. Nevertheless, we have found that the possession of eight or ten blocks of different sizes, and two or three coils of rope to suit them, has often done us most essential service; and as a traveller may unexpectedly find them necessary, where perhaps nothing but rope of hide or native vegetable fibre can be obtained, wesubjoin directions for making the simplest forms, which we believe will meet most of the probable requirements:

SINGLE AND COMPOUND BLOCKS.

SINGLE AND COMPOUND BLOCKS.

To make a single block, take a piece of good sound wood of medium density, and of a kind that will not easily split. Elm is much used at home: oak will do very well; so will also the stinkwood of Africa, and others of like quality in other countries. Let it be, for instance, 7in. long, 4in. wide, and 3in. thick; suppose it is to carry a rope of 1in. in diameter, properly called a 3in. rope, all ropes being measured by their circumference. Gauge along each of the narrow sides two parallel lines 1in. apart and 1in. from each edge, and draw lines across at 1in. from each end; then, taking a brace and an inch centre-bit, insert the centre so that its cutter shall just come within the cross-line at either end; bore the holes half through, and between them bore two other holes with the same bit, thus taking out nearly all the wood between the lines: reverse the block, and bore in like manner from the other side; take a chisel and mallet and clean away all the intermediate parts, and you will have a sheave hole 5in. long and 1in. wide. Clean it up with a file or rasp. Then, drawing a longitudinal line along the centre of each of the broader sides, mark it at 3in. from one end and 4in. from the other on each side, and, placing the centre of the bit on these marks, bore through each side for the pin-hole.

Then for the sheave select a log of the hardest wood conveniently obtainable;lignum vitæis generally used, but many kinds of acacia would answer very well. See that it is large enough to cut away all the sap wood, and leave a heart 4in. in diameter; trim this to a circular form, saw off a disc 1in. thick, fix it in a lathe, and with a gouge or half round rasp or file sink a hollow all round the edge. If you have not a lathe, saw the disc not quite off, and, while it is still attached to the log, make the hollow on the edge and saw it off whenfinished; bore an inch hole in the centre, place it in the shell, drive a pivot of hard wood right through, and you will find that at one end of the block the sheave very nearly fills the hole, while at the other a vacancy of about an inch is left to reeve the rope through.

Then, with a gouge or half round rasp, sink hollows in the outside of the shell along the centre line toward each end, and across the ends, to receive the strop; round off the corners and edges as neatly as you wish, and you will have a serviceable block like Fig. 1 (p. 384). Sometimes iron pivots are used, but these are a trifle smaller than the wooden ones; ¾in. iron would do, but then an iron socket ought to be let into the sheave as in Fig. 2. Some sheaves have small iron rollers let into them to run round on the pivot, and so diminish the friction; but a traveller need not work to such a nicety as this.

The snatch-block.

The snatch-block has already been two or three times mentioned, and perhaps this is a good opportunity to show its form, which is given in Fig. 3. The shell is longer and stouter than that of a common block, and in one side of it is cut the “natch” from which it takes its name; it is iron bound, but part of the strop is fashioned into a hasp, which is opened when the bight of a rope is to be passed into the natch and shut down upon its staple and forelocked to keep the rope from coming out should the strain be suddenly released.

Signal block.

Fig. 4 is a very useful kind of block for signalling; it has ten or more sheaves side by side, and as many lines running over them; in fact it ought to have as many sheaves as there are flags. It is kept in the signal locker with the halyards always rove, and each flag bent on to its own line. When required for use one end of the peak down-haul is bent on to the cleat in the centre, as shown in the figure, and it is hoisted to the peak end; the flags required are then sent up, care being taken to hoist each to such a height that they may read properly one under the other in the required order. These being done with are hauled down and others sent up, and much confusion and loss of time is saved by thus avoiding the necessity of bending on and unbending the several flags from one pair of halyards.

Double block.

We give also figures of two useful forms of double block. No. 5, on which the sheaves are side by side, is called a sister block. No. 6, in which they are one above the other, is a fiddle block. Notice that in this form the lowermost sheave is the smallest, and thus the rope passing over it is not jammed by the one that passes over the upper.

MAKESHIFT LATHES.

MAKESHIFT LATHES.

Makeshift lathes

In the manufacture of a number of wooden articles, such as the sheaves of blocks, bowls, round balls, &c., the aid of a makeshift lathe will be required. There are several forms of lathe made use of in different countries. No. 1 in the annexed illustration is the best we know of for the use of the traveller or explorer. To make a contrivance of this kind proceed as follows: Prepare three squared posts, bore an auger hole through the top of each at about 5in. from its head; to these holes fit a spindle made of some hard tough wood, in such a way that it will just easily play round in the holes without shaking about; cut a slice from a log about 7in. in diameter; trim it until it is quite round; cut a tolerably deep groove round the edge, and bore a hole in the centre for the spindle to come through. Now, from a piece of pointed iron rod or bar make a pivot pin, as shown passing through the head of the post which stands alone; fit this in the hole so tightly that the driving of a single wedge prevents it from sliding forward or back. All the posts must be firmly fixed in the ground at an even depth, and at the relative distances shown in the engraving. In theend of the spindle opposite the pivot pin three sharp iron spikes, made from nail points, must be driven; these hold the work in its place when revolving. This it is made to do by the action of the spring overhead, which is usually made from a tough elastic pole or bamboo cane. The end of the spring is fitted with a long strip of hide or a rope, which, passing once round the grooved slice of log, is attached to the end of the treadle. This is made from a naturally-forked branch, with a bit of plank lashed fast to it for a foot board. The chisel rest is made by driving a post into the ground in front of the work, making a saw-cut in its head, and then driving a bit of thin board or a piece of broad hoop iron into it, in the form of the letter T. The spindle is prevented from moving too far back by having pins driven through it before and behind the tail-post.

The lathe represented at Fig. 2 is common throughout the East. It is by the use of this contrivance that we have seen the long and beautifully straight pipe tubes, for which Stamboul is so justly celebrated, made. We have also seen the turners of Poona, in India, making their wonderful nests of almost air-tight boxes by the aid of the bow-lathe (Fig. 2). It is erected much on the principle of Fig. 1; but is usually placed so close to the ground that no one but an Asiatic could work conveniently at it.

Grinding stones, to mount.

GRINDING STONES.

GRINDING STONES.

Few border stores will be found without a Newcastle grinding stone, and very few expeditions of any magnitude omit including one or more in their list of useful matters. There are several modes had recourse to for setting up a grinding stone, but we usually adopt one of the plans shown in the accompanying illustration. Fig. 1 represents a natural fork set up in a slanting direction, and then treenailed against the trunk of a tree. To mount the stone, a straight bar of wood or iron, squared in the centre, must be wedged tightly in the square hole of the stone. If the axle is of wood, the two ends mustbe rounded, in order that they may revolve freely in the notches cut for their reception in the support. A wooden winch handle must then be fitted to one of them. If the axle is to be of iron, it should be first heated in the fire to a red heat; the form of the handle bent in it by hammering; the centre squared, and roughened at the edges by the use of a cold chisel; and the two bearing or revolving surfaces made round by the use of the hammer and file. Wooden pins or iron staples will serve to keep the axles from rising out of the notches and becoming displaced. A suspended bullock’s horn, with a hole in the small end, through which a wisp of tow or moss is loosely pulled, makes a very good water drip, to prevent the tools from losing their temper when being ground. Some prefer putting a wooden trough, to contain water, under the stone. This is a mere matter of taste.

PACK-SADDLE CROOKS.

PACK-SADDLE CROOKS.

The use of forked sticks.

A vast deal of trouble may be saved when various useful articles are being made from wood, by a judicious selection of such branches as nature has already fashioned to the hand of the bush carpenter. The above illustration will serve to give an example of this; it represents a set of pack-saddle crooks. To make these, it is only necessary to cut with the axe four stout hooks and two straight bars; bore or burn a hole through the upper end of each hook, lash them together in pairs with strips of raw hide or rope, and lash on the side bars as shown in the engraving. The hooks are then ready to be placed on the pack saddle, to which they are securedby a girth, which is attached at each end to the side bars of the hooks. We have found these contrivances most useful for carrying dead game, packs, or bundles of poles.

Hand-barrow.

A very useful description of makeshift hand-barrow can be made from four forked branches arranged as shown in the following illustration, and lashed together with strips of raw hide. We first saw these contrivances in use on the borders of the Mena country, where the natives used them for the purpose of carrying a peculiar description of clay, which was collected among the ravines between the hills, and used for the manufacture of pottery. These barrows, from their lightness, elasticity, and great strength, answer admirably.

MAKESHIFT HAND-BARROW.

MAKESHIFT HAND-BARROW.

Camp furniture.

CAMP TABLE AND STOOL.

CAMP TABLE AND STOOL.

Excellent camp tables and stools can be made by selecting such branches or tree trunks as have grown in either three or four prong form, as shown in the engraving (Figs. 1 and 2 represent a table and stool). The tops are made from slices cut from convenient-sized logs. The table top is supported and strengthened by having natural grown knee pieces treenailed to the sides ofthe main upright or pillar. A small stool is best made by cutting away the top of the pillar until it is made to fit, a large auger hole bored in the centre of the seat, when driven in, the pillar head is split with a chisel, and then wedged tight. Should a larger table leaf be required than an ordinary log slice will afford, one may be built up by boring holes in the edges of boards, and treenailing them together, as shown in Fig. 3 (p. 389).

wooden latches

Gate latches.

Latches for gates and doors can be made entirely of wood, as represented in the illustration A, in which Fig. 1 shows the latch in use, and Figs. 2 to 7 the form to which each part must be cut before being put together. The illustration B represents another form of wooden door latch well adapted for cupboard fastenings, and three makeshift modes of forming box hinges. Fig. 1 is the swivel hinge; Fig. 2 the salt-box hinge; and Fig. 3 the claw hinge. Their mode of construction will be at once understood on reference to the illustration B.

NATIVE PLOUGH.

NATIVE PLOUGH.

The knee-like bends and forks so often found to exist in thebranches of trees are often taken advantage of in the manufacture of makeshift ploughs. The preceding and following illustration represent a native and settler’s makeshift plough.

SETTLER’S PLOUGH.

SETTLER’S PLOUGH.

useful implements

Agricultural implements, &c.

Many useful agricultural and other implements can be made by the use of forked sticks, some of which are shown in the above illustrations.

yoke for pails

A strong fork, with treenails driven through holes bored in its ends, makes a very convenient yoke for carrying pails of water or other heavy weights, as shown in the accompanying illustration.

It not unfrequently happens that pigs, when the settler is fortunate enough to have any, are apt to cause much mischief among the young canes or maize plants. To prevent them from doing so, prepare a good number of “hogs’ cravats” from stout forked sticks, as shown inthe annexed illustration, put them on, and a fence of very moderate strength will keep the pilferers out effectually.

hog’s cravat

supple jack

use of supple jack

Many descriptions of trees will be found on which the branches grow in a species of crown at each joint of the trunk. The holly and some kinds of pines are familiar examples, and are commonly found in this country. From a piece of the main stem of a young tree of a suitable size, a contrivance called a “supple jack” can be made by cutting off the radiating branches to a convenient length, removing all the bark, and then pointing each projecting spine like a skewer. When the jack is hung up by its small end it forms a most convenient contrivance from which to suspend dead game, fish, or odds and ends. To hang a bird to the jack pass one of the pointed hooks up through the angular space between the lower mandible, and bring it out at the beak. A fish is best suspended by entering the hook at one of the gill covers, and bringing it out of the mouth; hares or rabbits by passing one hind leg through a space formed by cutting a slit behind the back tendon of the other. The legs thus form a loop to slip over one of the hooks of the jack. The foregoing illustration shows the jack in use. Saddle rests, wall and tent pole hooks, &c., can be made from knee, elbow, or hooked branches of trees. They can be attached to any fixed pointeither by the use of treenails or lashing, as shown in the preceding illustration.

The maple and some other kinds of trees are not unfrequently found with large projecting excrescences growing on their trunks; these, when carefully chopped off with the axe, will be found to have a hard, dense crust or shell next the bark, whilst the main body of the wood is soft and easily scooped out. From these abnormal growths excellent bowls may be made. Some of them are sufficiently large to admit of vessels capable of containing from eight to ten gallons being made from them. Very excellent platters or shallow trays can be obtained from the same source.

The use of the sledge in some of its various forms is general throughout the greater portion of the known world. The northern regions may, however, be fairly considered the great field for the performance of sledging operations. Men, animals of various kinds, and the wind are all at times made available as means of applying either traction power or propulsion to the sledge; and as the build and rig of ships and boats are found to vary according to the seas they are sailed over, and the requirements of those who sail in them, so will sledges differ in form, size, capacity, weight, and the material from which they are constructed according to the nature of the climate and country they are used in. The far north, and in regions where long and rigid winters lock the earth, the rivers, lakes, and even at times the sea itself, in ice, and covers the whole with a thick mantle of snow, such travelling would be next to impossible, without the aid of the sledge, which, although apparently simple in design, requires much care and judgment to construct successfully.

Dimensions of sledges.

Dr. Kane, the Arctic explorer, thus writes on this subject:—

“The dimensions and structure of the sledge are of vital importance, almost imperceptible differences cause an increase of friction equal to the draught of another man or dog. The curvature of the runners must be determined experimentally. The ‘Faith’ was even preferable to the excellent model of Captain McClintock; the dimensions of both are as under:

“The shoeing of large English sledges was burnished ⅛in. iron, ours were annealed3⁄16in. steel, as light as possible to admit slightly countersunk rivets. Sealskin lashings, applied wet, were used for the cross-bars, the wood was hickory and oak, not the Canada elm used by the Lancaster Sound parties. A sledge like this, with a canvas cover on which to place and confine the cargo, would load from 150lb. to 200lb. per man. The ‘Faith’ has carried 1600lb.”

Sledges, to draw.

When manual labour is brought to bear on the sledge it is usually applied through the medium of traction, propulsion, or the two combined. The men who propel a sledge simply push behind, whilst those who draw do so by the aid of track ropes and shoulder bands, which latter contrivances are called “rue ruddies,” and are used as shown in the illustration.

drawing a sledge

The track lines are best made from twisted horsehair, but in the absence of that material Manilla rope is the next best. Each man of the tracking party should be provided with his own track line and rue ruddy, for which he should be held responsible. The sledge to be drawn is fitted at its front end with a species of bridle loop, to which all the lines are attached by rings, in such a way that as the sway or motion of the sledge inclines to either side, the rings travel forward or back on the bridle.

It is well, however, to attach one line on each side without a ring to the sledge runner outside the attachment of the bridle, in order that when the sledge has to be turned, or its line of direction suddenly changed, the power of one man on each side may be brought directly to bear. The sliding lines must be so adjusted with regard to length that the whole party of trackers may use their full powers without coming in contact with each other. The longest lines may be from 16ft. to 20ft. from ring to end.

The rue ruddy.

rue ruddy

The rue ruddy is a broad band of double canvas or skin with the edges sewn in, and the bearing joints padded and stuffed with hair. A loop is formed at the point at which the trackrope is attached, through this the toggle of the line is passed. When an extra man is attached to a line, a spare toggle is attached to it by a timber hitch, as shown in the illustration here given. A short mast and small square sail can be used with great advantage when the wind is fair. Kites would also facilitate the passage of sledges over comparatively smooth ice.

Dog sledge and harness.

sledge dog in harness

The dog sledge is a most valuable and important accessory to northern travel, and without its assistance the Esquimaux hunter and Arctic explorer would be at times almost helpless. The form of the dog sledge, and the manner of harnessing the dogs, varies according to the customs of the countries in which it is used and the period of the year when its aid is required. We shall, therefore, confine ourselves to a description of such as are most likely to be of value to the European traveller, leaving him to select the form of harness best suited to his particular tastes. Dog harness is usually made from strips of sealskin sewn together with threads formed from sinew. Some drivers make use of one trace, others prefer two. The most common plan is to lead two traces, so to speak, into one, as shown in the above illustration. Many drivers of great experience work their dogs abreast when the single trace arrangement is adopted. Others use a leader, harnessed ahead of the other dogs.

Dr. Hayes, the Arctic explorer, thus writes regarding his dogs: “We harness them each with a single trace, and these traces are of a length to suit the fancy of the driver, the longer the better, for they are then not so easily tangled. The draught of the outside dogs is more direct, and if the team comes on thin ice and breaks through, your chances of escape from immersion are in proportion to their distance from you. The traces are all of the same length, and hence the dogsrun side by side, and, when properly harnessed, their heads are in a line. My traces are so measured that the shoulders of the dogs are just 20ft. from the foremost part of the runners.”

HELPING THE DOGS.

HELPING THE DOGS.

Speed and the whip.

With a twelve-dog team, harnessed in this manner, a high rate of speed may be gained. Six measured miles have been run over a tolerably good surface in twenty-eight minutes. The direction and speed of the team are regulated partly by the voice, but mainly by the whip; and, as this instrument is so important and difficult to handle, we cannot resist giving the reader the benefit of the experience of Dr. Kane, than whom few have had greater experience in dog-sledge management. He thus describes the whip he used for his teams. “The whip is 6yds. long, and the handle but 16in., a short lever by which to throw out such a length of seal hide. Learn to do it, however, with a masterly sweep, or else make up your mind to forego driving a sledge, for the dogs are guided solely by the lash; and you must be able, not only to hit any particular dog out of the team of twelve, but to accompany the feat also with a resounding crack. After this, you find that to get your lash back involves another difficulty, for it is apt to entangle itself among the dogs and lines, or to fasten itself cunningly round bits of ice so as to drag you head over heels into the snow. The secret by which this complicated set of requirements isfulfilled consists in properly describing an arc from the shoulder, with a stiff elbow, giving the jerk to the whip handle from the hand and wrist alone. The lash trails behind as you travel, and when thrown forward is allowed to extend itself, without an effort to bring it back. You wait patiently after giving the projectile impulse until it unwinds its slow length, reaches the end of its tether, and cracks to tell you that it is at its journey’s end. Such a crack on the ear or forefoot of an unfortunate dog is signalised by a howl quite unmistakable in its import. The mere labour of using this whip is such that the Esquimaux travel in couples, one sledge after the other. The hinder dogs follow mechanically and thus require no whip, and the drivers change about so as to rest each other.


Back to IndexNext