CHAPTER VIIIPORTS AND PORT EQUIPMENT

CHAPTER VIIIPORTS AND PORT EQUIPMENT

Notall of the story of the sea is in the story of ships. Ships have always required shelter from the stress of sea, where repairs could be made, where cargoes could be loaded and unloaded, where crews and passengers could be taken on board or put ashore. In ancient times a river’s mouth might have been sufficient, or a natural indentation in the coast line where a small protected body of water lay in the lee of a jutting headland. Sometimes a small bay, almost completely surrounded by land, and still deep enough for ships to ride at anchor, served as a harbour of refuge. Sometimes islands might be found that protected a small arm of the sea.

All such places along the Mediterranean coast early became known to navigation, for the early sailor was inclined to skirt the shore, fearful of the perils of the open sea. At first these sheltered spots were left, of course, as Nature had made them. Perhaps a bar at the mouth made entry difficult; perhaps the prevailing winds drove piled-up seas into the broad mouths of others; perhaps marshes surrounded others still, and in such cases these harbours were less used than those without such disadvantages.

But wherever a fine harbour existed there grew up a port, for ships, except those meant for war, have no uses save to carry the goods and passengers that originate ashore. If, on some one of these finer harbours, a port sprang up, and if a rich interior country was easy of access from it, because of a navigable river, perhaps, or because caravan routes convergedthere, or an easy defile through some mountain range led to some rich valley not too far distant, these ports became important. They grew in size because the ease of land or inland transportation permitted the people of the interior to bring their goods for sale. Because of their increased size they attracted the makers of cloth, of leather goods, of glass, of metal ware and cutlery, and of all the great list of goods that go to make up commerce. These artisans came to important ports because the ease of distribution made it simpler for them to sell their wares.

A MAP OF THE PORT OF NEW YORKThe Lower Bay has not yet been developed, but about the Upper Bay and along the Hudson and East rivers hundreds of piers are in everyday use. While New York is a huge port and while it can continue to grow for many years it has numerous disadvantages, one of the chief of which is the absence of a belt line railroad.

A MAP OF THE PORT OF NEW YORKThe Lower Bay has not yet been developed, but about the Upper Bay and along the Hudson and East rivers hundreds of piers are in everyday use. While New York is a huge port and while it can continue to grow for many years it has numerous disadvantages, one of the chief of which is the absence of a belt line railroad.

A MAP OF THE PORT OF NEW YORK

The Lower Bay has not yet been developed, but about the Upper Bay and along the Hudson and East rivers hundreds of piers are in everyday use. While New York is a huge port and while it can continue to grow for many years it has numerous disadvantages, one of the chief of which is the absence of a belt line railroad.

The Lower Bay has not yet been developed, but about the Upper Bay and along the Hudson and East rivers hundreds of piers are in everyday use. While New York is a huge port and while it can continue to grow for many years it has numerous disadvantages, one of the chief of which is the absence of a belt line railroad.

At first, the ships being small, they could be drawn up on the beach, but as trade increased it was found advisable tobuild warehouses and sea walls, so that goods could be stored and easily loaded and unloaded. The port having become important, it became vital to protect it from pirates and other enemies, so walls were built about it on the landward side, and sometimes sea walls were built on the water side, in which a narrow entrance was left open during the day and closed with a heavy chain or a floating barricade at night. These sea walls were often as important to shield the ports from storms as to protect them from enemies. Thus the early ports developed, and within these walls were not only all the traders with their goods, but shipyards and those who supplied ships with cordage, lumber, and sails, as well.

This simple type of port was the rule down to long after the Middle Ages. As a matter of fact, the great complete structure of the modern port has been developed within very recent times—principally since the introduction of steam.

Naturally enough such cities as Venice and Genoa, in their heyday, about or a little after the year 1200, were no longer simple ports, but by comparison with even minor ports of to-day they were simple places.

With the development of steam, however, ports became more and more complex. The increased size of ships, the great investments that demanded no loss of time in loading and unloading, the vast increase in the amount of freight and the number of passengers handled—all these, and many other reasons, compelled ports to add complexity to complexity, until the person unfamiliar with the great doings of a busy modern port stands aghast at the vast collection of quays and docks, jetties and sea walls, steam tugs and canal boats, ferryboats and barges, floating grain elevators and great suction dredges, ocean liners and ocean tramps, and a great variety of complicated equipment in the shape of shipyards, coal pockets, factories, warehouses, railroad terminals, and many other things too numerous to mention.

A MAP OF THE PORT OF LIVERPOOLWhile Liverpool is much smaller, so far as mere area is concerned, than New York, it handles about the same amount of freight. Freight ships load and unload in the tidal basins while passenger steamers use floating landing stages.

A MAP OF THE PORT OF LIVERPOOLWhile Liverpool is much smaller, so far as mere area is concerned, than New York, it handles about the same amount of freight. Freight ships load and unload in the tidal basins while passenger steamers use floating landing stages.

A MAP OF THE PORT OF LIVERPOOL

While Liverpool is much smaller, so far as mere area is concerned, than New York, it handles about the same amount of freight. Freight ships load and unload in the tidal basins while passenger steamers use floating landing stages.

While Liverpool is much smaller, so far as mere area is concerned, than New York, it handles about the same amount of freight. Freight ships load and unload in the tidal basins while passenger steamers use floating landing stages.

Ships do not make a port. Even a fine harbour will not do that alone. New York is to-day one of the very greatest of the world’s great ports, but had Nature erected a barrier of insurmountable mountains around it, even though the harbour and the entrance from the sea had been left exactly as they are now, it would have been an inconsequential place, important, perhaps, as a naval base, but unimportant as a centre of trade, for communication with the interior would have been rendered difficult or impossible, so that the wheat of the great Northwest, the iron and steel of Pittsburgh, the manufactured products of a thousand centres would have found their way to Baltimore or Philadelphia or Boston or to some other port easier of access.

Thus a port depends on two things—first, ease of access to the sea; second, ease of access to a productive hinterland.

Nor can a port become highly important if its trade is all in one direction. If it imports but does not export, ships can come loaded but must go away empty, and to do that they must charge very high and possibly prohibitive rates for the freight they bring. If the port exports but does not import, then ships must come empty before they can secure their cargoes, and the result is the same. A healthy port, then, must have aconstant and steadystream of freight bound in both directions. Montreal would be a more important port than it is if it served a hinterland that bought in larger quantities the goods manufactured in Europe, for Montreal could export very nearly all the wheat that ships could take from her harbour. But her imports are so much less than her possible exports that ships cannot afford to come in sufficient numbers to carry away all that she could send, especially as the wheat can be, and a large part of it is, diverted to Philadelphia, New York, Boston, and Portland.

Imagine a rich country, producing goods in large quantities which are salable in foreign lands, and anxious and willing to buy, in equal quantities, the goods of these foreign lands. Imagine such a country without a single harbour—with, perhaps, a long unbroken coast of sandy beach on which relentless surges pound the whole year through. Would such a country long remain without a port? Not so. No matter how difficult and costly the task might be, a port would bebuiltupon that very coast. A harbour would be dredged. Great sea walls would be erected. Vast warehouses, great quays and docks, busy railroad terminals would soon be in operation, and where Nature had made no harbour, man would have one.

But Nature is seldom so unkind. All around the worldare natural harbours which need only the clever hand of man to become busy with the transfer of goods. Some, of course, have more natural advantages than others. Some are almost entirely the work of man, as others are almost entirely the work of Nature, but their natural advantages must be many ere it is worth the time of man to improve them.

A MAP OF THE PORT OF RIO DE JANEIRORio Bay is probably the finest in the world, but mountains paralleling the coast form a handicap to the easy transportation of goods inland.

A MAP OF THE PORT OF RIO DE JANEIRORio Bay is probably the finest in the world, but mountains paralleling the coast form a handicap to the easy transportation of goods inland.

A MAP OF THE PORT OF RIO DE JANEIRO

Rio Bay is probably the finest in the world, but mountains paralleling the coast form a handicap to the easy transportation of goods inland.

The natural advantages of a port, however, are of the greatest value when they combine many things far distant from the port itself with the natural advantages of the harbour, its surroundings, and its outlet.

To cite New York once more, among its great advantages are these: First, a fine harbour, with ease of access to the sea yet with thorough protection from its storms. Second, suitable land surrounding the harbour, on which factories, warehouses, piers, and shipyards can be erected. Third,a great and navigable river leading into a rich country. Fourth, a fine canal connecting the upper reaches of that river with a far greater land, rich in people of great purchasing and producing power, rich in mines, in farms, in factories. Fifth, routes leading overland into the interior along which great railroads have been built that reach with their network ten thousand centres that otherwise could not buy the goods imported to New York or sell their own either there or beyond the seas. These five things have created at the mouth of the Hudson one of the greatest seaports of all time. Without any one of them New York could not be the port it is, but of the five, the first two are the least important, for a harbour could be made, and had the surrounding land been a marsh it could have been built into dry land. Without the trade of the great land to the West, however, New York could not have been the port that it is to-day.

But an account of all the factors that go to make a port would take one far afield, so with only this inconsequential statement in reference to the vast economic structure that lies behind a port, I shall confine myself directly to the port itself and to its environs, its equipment, and its activities.

No two ports are identical, but the major ports of the world divide themselves more or less readily into types which I may be permitted to call the European and the American types, inaccurate as those classifications may be. I shall describe, in more or less detail, these two types, and add to this something from other ports that fall less readily under these two inaccurate classifications.

To begin with it needs to be said that mere size has little bearing on a port’s ability to handle large quantities of freight. By comparison with the area of the port of New York the area of the port of Liverpool is limited, New York being perhaps six times larger. Across the Mersey from Liverpool are the Birkenhead Docks, which, so far as mere area isconcerned, are hardly larger than the Cumminipaw Terminal of the Central Railroad of New Jersey which lies across the Hudson from the Battery. The port of New York, including the New Jersey side of the Hudson and the Bay, has a developed waterfront several times as great as the port of Liverpool including the Birkenhead Docks, yet the tonnage of overseas freight handled in each of these two ports is roughly the same.

The same comparison can be made with many other European ports, which are all far smaller than New York although several equal or exceed New York in the tonnage of transoceanic freight handled.

But let us take New York and describe it, in order that other ports may be compared with it.

A MAP OF THE PORT OF CAPE TOWNTable Bay is open to the force of north and northwest winds. Before the bay could protect ships from the frequent storms blowing from these directions a series of breakwaters had to be built, in the lee of which ships could anchor.

A MAP OF THE PORT OF CAPE TOWNTable Bay is open to the force of north and northwest winds. Before the bay could protect ships from the frequent storms blowing from these directions a series of breakwaters had to be built, in the lee of which ships could anchor.

A MAP OF THE PORT OF CAPE TOWN

Table Bay is open to the force of north and northwest winds. Before the bay could protect ships from the frequent storms blowing from these directions a series of breakwaters had to be built, in the lee of which ships could anchor.

Table Bay is open to the force of north and northwest winds. Before the bay could protect ships from the frequent storms blowing from these directions a series of breakwaters had to be built, in the lee of which ships could anchor.

Entering New York Bay from the ocean a ship passesbetween Coney Island on the right and Sandy Hook on the left. Within these two points lies the Lower Bay, a great and largely undeveloped body of water around which practically none of the port’s equipment is placed. Standing on up the channel, with Long Island on the right and Staten Island on the left, the ship enters the Narrows, a restricted passage connecting the Lower and the Upper bays. Once through the Narrows the port begins to show itself. The Upper Bay is smaller than the Lower and is roughly rectangular, while at each corner a river or a strait connects it with other bodies of water. Of these the Narrows, just mentioned, is the most important, for through it flows far and away the greatest stream of shipping. The Hudson River is second in importance, for this great and navigable stream penetrates far into the interior and is connected with the Great Lakes by the Erie Canal, or, as the newly finished improvement on the Erie Canal is called, the State Barge Canal. The other two exits from the Upper Bay are the East River—a strait connecting the Bay with Long Island Sound—and, least important, the Kill von Kull, leading from the Upper Bay to Newark Bay.

Piers and huge railroad terminals are to be found on every side, and, more important still, they line the Hudson River for four or five miles on each side from its mouth at the Battery, to Fifty-ninth Street on the Manhattan side, and to Fort Lee in New Jersey. Similarly, but to a less extent, the East River is lined with piers while a great railroad terminal is located on Long Island Sound just beyond where the East River ends. Yet thriving as it is, this great port, compared with some other great ports, is an inefficient place.

Marseilles is a smaller port than New York, yet Marseilles, for every linear foot of equipped quay, averages annually 1,500 tons of cargo transferred as against 150 at New York.

The reason for this is that the ports are two different types.In New York the piers are long and narrow and are built on piles from the shore line out into the water to the pier line. Such structures are inefficient in many ways. The piers being narrow, they make it difficult for a roadway to be kept open throughout their entire length, and force the handlers of freight to store it high on both sides. Furthermore, the strength of the structures will seldom permit of the erection of numerous cranes along each side in order to expedite the loading and unloading of ships.

A MAP OF THE PORT OF MARSEILLESIn this case the city grew up practically without a harbour. Finally a breakwater was erected parallel to the shore in order that ships might be protected from the sea.

A MAP OF THE PORT OF MARSEILLESIn this case the city grew up practically without a harbour. Finally a breakwater was erected parallel to the shore in order that ships might be protected from the sea.

A MAP OF THE PORT OF MARSEILLES

In this case the city grew up practically without a harbour. Finally a breakwater was erected parallel to the shore in order that ships might be protected from the sea.

In this case the city grew up practically without a harbour. Finally a breakwater was erected parallel to the shore in order that ships might be protected from the sea.

In Hamburg there are quays 1,500 feet long with 3-ton cranes spaced every 100 feet. In all of New York Harbour there is no installation similar to this. It is true that at the Bush Terminals there is an excellent installation of warehouses, piers, railroad facilities, and other port equipment—aninstallation comparable to the best—but New York as a whole could be greatly improved, although it is only fair to say that the difficulties and expense would be great.

But while foreign ports are likely to be more lavishly equipped with loading and unloading machinery, it must be remembered that they, long since, have developed the small areas at their disposal and cannot readily expand, while New York, great as it is, still has room for expansion and could add many times its present equipment to what it now has.

Furthermore, New York labours under another, and a very serious, handicap. It has grown to be one of the world’s great manufacturing centres. It abounds in factories. The wholesale houses, the stores, and other places of business handle huge stocks of goods, and the railroad facilities are limited. Every port should have a “belt line” railroad, that is, a railroad circling it about, crossing all the lines that come to it from any direction. With such a railroad, freight could be brought into the city by any line, turned over to the Belt Line, and switched to almost any of the industrial sections or quays. But New York has no such railroad. To begin with, New York proper is on the Island of Manhattan, and only one freight line comes into the city. The others all have their terminals in New Jersey, save for one on the north shore of Long Island Sound and one in Brooklyn. Therefore, it is necessary to transfer the freight intended for New York by means of “car ferries.” Furthermore, all the freight landed on New York piers must be transported by trucks, or reëmbarked on canal boats and barges. Except on the New Jersey side of the Bay and the Hudson River, on Staten Island and at the Bush Terminals, there are few places in the entire port where railroads can run their cars to warehouses conveniently placed for the reception of cargoes.

Busy as are the piers on Manhattan Island they are devotedalmost exclusively, so far as freight is concerned, to the shipments intended for the business houses located in Manhattan. The congestion always noticeable along West Street is due to the unfortunate location of the principal borough of New York City on an island, and little of this busy district is given over to the handling of foreign commerce.

A TUG BOATThe bows of these boats are often protected by pads to which much wear often gives an appearance of a tangled beard.

A TUG BOATThe bows of these boats are often protected by pads to which much wear often gives an appearance of a tangled beard.

A TUG BOAT

The bows of these boats are often protected by pads to which much wear often gives an appearance of a tangled beard.

Were the facilities for handling freight more highly developed, a large percentage of the cost of shipment would be eliminated. While the port of New York is fortunate in many respects, its plan is such that it is difficult to see how a highly efficient system of freight transfer could be installed without disproportionate expense. Lacking this system, there is a great deal of freight handled in the most expensive possible way—by hand—which could be handled morecheaply were it practicable to instal the most highly developed mechanical assistance. This manual labour necessitates higher rates for the shipment of freight. How great these costs are is apparent when one realizes that once aboard ship, a cargo of coal could be carried from New York to Rio de Janeiro for what it would cost, to move by hand, a pile of coal the same size as the cargo, a distance of sixty feet. Such a statement gives one a little grasp on the huge costs of unnecessary freight handling.

What I have termed the “American type” of ports are those that have piers built on piles out from the shore line. Alongside these piers the ships are tied up, and largely with their own derricks they hoist their cargoes from their holds and deposit them on the pier. Sometimes these piers are two stories high, with one floor intended for incoming and the other for outgoing freight. These piers may be from a few hundred to a thousand or more feet in length, and the longer they are the broader they must be in order that there may be enough space between the freight on both sides for the trucks that cart the freight to or from them, for the longer the pier the more freight it will have and the more trucks it will need to accommodate in order to have it moved.

But piers are not the best arrangement for handling freight. A more nearly ideal arrangement is a warehouse served on one side by ships and on the other by a railroad and trucks. In this case the warehouse becomes a reservoir capable of taking quickly into storage the huge cargoes of many ships. From this reservoir of imports freight trains can be loaded conveniently without congestion. On the other hand, exports sent to the warehouse by rail can arrive in trainload or carload or even less-than-carload shipments and can be stored conveniently until a cargo is on hand, when it can quickly be put aboard ship. In such a port as New York such a warehouse would need, as well, to be equipped toload and unload lighters and canal boats. Were all of the piers of the port of New York rebuilt along these lines—and that is practically impossible—the port could handle with ease and the minimum of expense many times its present tonnage.

A NEW YORK HARBOUR FERRYWhile these double-ended ships are large, they do not compare in size with the liners. Yet they carry hundreds of thousands of passengers to and fro across the Hudson and the Upper Bay.

A NEW YORK HARBOUR FERRYWhile these double-ended ships are large, they do not compare in size with the liners. Yet they carry hundreds of thousands of passengers to and fro across the Hudson and the Upper Bay.

A NEW YORK HARBOUR FERRY

While these double-ended ships are large, they do not compare in size with the liners. Yet they carry hundreds of thousands of passengers to and fro across the Hudson and the Upper Bay.

While these double-ended ships are large, they do not compare in size with the liners. Yet they carry hundreds of thousands of passengers to and fro across the Hudson and the Upper Bay.

What I have called the “European type” of port is one in which piers, such as those in New York, are practically unknown. Many European ports have a handicap that does not trouble ports of the United States. This handicap is the high tide. While the tide at New York has a range of 4½ feet, at Boston 9½ feet, at Baltimore 1 foot, Liverpool is troubled with a range of 25 or 30 feet, and many other ports have as much, or almost as much. This means that while a ship may be tied up to a pier at New York and not be bothered by an extreme movement up and down great enoughto make her any difficulty in the handling of her cargo, ships in Liverpool cannot be berthed at unprotected piers, for if they were they would find their decks far below the deck of the pier at low tide, while at high tide the water would raise them until their decks would be above it.

There are two ways of overcoming this difficulty. At Liverpool great landing stages are built, floating in the water parallel to the shore. Running from these to the shore are great hinged gangplanks which permit the landing stage to rise and fall with the tides while these gangplanks, which are really more like bridges, hold them parallel to the shore and serve as bridges as well. A ship, made fast to one of these landing stages, rises and falls as the stage does, and the two maintain their relative positions to each other regardless of the stage of the tide. In Liverpool these stages are largely used for passenger ships.

The other method, which is also in use at Liverpool as well as at many other ports, is to build a sea wall across the entrance to the docks, and in this sea wall to build a “lock,” or a water gate. When the tide is in, the water gate is opened and the harbour or the dock is flooded to the level of high tide. As the tide recedes this lock is closed and the water level behind it remains the same. Ships pass in and out, either at high tide, when the lock or gate can be left open for a time, or, if at other stages of the tide, by means of the lock, which, being made up of two gates at the opposite ends of a long, narrow, canal-like passageway, makes it possible for the ship to pass into the lock, where the water level can be made to coincide with the level of the dock or of the water outside. Then, by opening the inner or the outer gate, as the case may be, the ship can enter the dock or the unprotected waters outside.

Equipment of both these types is to be found at a number of European ports, while still other ports, not troubled witha great range of tide, do not find it necessary to instal them.

A NEW YORK HARBOUR LIGHTERLighters take various forms and perform various tasks. European lighters are more likely to have pointed ends. American lighters very often have square ends. Occasionally they have engines of their own, but generally they depend on tugs for power.

A NEW YORK HARBOUR LIGHTERLighters take various forms and perform various tasks. European lighters are more likely to have pointed ends. American lighters very often have square ends. Occasionally they have engines of their own, but generally they depend on tugs for power.

A NEW YORK HARBOUR LIGHTER

Lighters take various forms and perform various tasks. European lighters are more likely to have pointed ends. American lighters very often have square ends. Occasionally they have engines of their own, but generally they depend on tugs for power.

Lighters take various forms and perform various tasks. European lighters are more likely to have pointed ends. American lighters very often have square ends. Occasionally they have engines of their own, but generally they depend on tugs for power.

But the principal difference between the European and American types is to be found in the use by the former of huge quays, sometimes more or less similar in general shape to the American piers, but infinitely larger. Also they are surrounded by stone sea walls and are of dry land. On these great quays are warehouses, railroad tracks, derricks, cranes, and even great railroad yards. They are of various sizes and various shapes, but all of them, by comparison with piers, are very large. At Manchester, for instance, where a harbour has been built in that inland city and connected with the Irish Sea by the Manchester Ship Canal, there are only eleven or twelve quays, but their area is 152acres, and they have a water frontage of more than five miles. The railways and sidings on and immediately adjacent to the quays have a total length of well over thirty miles. Great warehouses, some as many as thirteen stories high, are built on these quays, with berthing space for ships on one side and railroad sidings on the other. Inland canals as well as railroads serve this port and, of course, much local freight is moved by truck. Manchester is an excellent example of what I have termed the European type of port.

But as I have said, no two ports are identical. Each port has advantages and disadvantages, problems and solutions of its own. Descriptions of a few scattered ports may be of some service in giving an idea of the variety of problems and solutions that may arise, before I turn to a description of the details of port equipment.

I have given a little space to the arrangement of the ports of New York and Manchester, and Liverpool has been mentioned. Let us turn, then, to Rio de Janeiro, a port very different from these.

Rio is on one of the most magnificent harbours in the world, and is becoming an increasingly important port. It labours, however, under a very serious handicap in that it has no waterway leading into the vast interior of Brazil. Furthermore, other easy routes inland from Rio are interfered with by the mountain ranges that lie close to the coast. Railroads have been built across these mountains for some distance into the interior, but the grades are heavy, and by present methods it would be expensive and difficult to send great quantities of freight by these routes. For this reason Rio is not likely ever to become a South American New York. Here, then, is a case of a magnificent harbour that will probably never be used to its capacity.

The harbour itself is about sixteen miles long and is from two to eleven miles in width. It is deep enough to accommodatethe world’s greatest ships and could readily be equipped with an almost perfect arrangement of terminal facilities. As it stands the port is excellent, but by comparison with other large ports its tonnage of freight is limited. Quays similar to those so often used in European ports are in use in Rio, and in the development of the port the European system is being followed.

A MISSISSIPPI RIVER STERN-WHEELER

A MISSISSIPPI RIVER STERN-WHEELER

A MISSISSIPPI RIVER STERN-WHEELER

Capetown is less fortunate in its harbour than Rio, for Table Bay, upon which Capetown is situated, is twenty miles wide at its entrance and is fully exposed to the north and northwest gales. This handicap necessitated the construction of huge breakwaters which enclose two basins of a total area of about seventy-five acres. In addition there is a good anchorage in the lee of one of the breakwaters, and the port is expanding in order to utilize this protected spot. Here again the several miles of quays are of the European type.

Marseilles, on the other hand, can hardly be said to have a harbour at all. It is situated on an indentation of the coastwhich is slightly protected by Cape Croisette, but which is entirely unprotected from the west. This has necessitated the erection of a breakwater parallel to the shore line behind which are a series of basins in which are a dozen or so docks and quays. The Mediterranean is practically tideless, so the basins at Marseilles do not require locks, but the basins, in almost every respect, except for the absence of dock gates, are similar to those, for instance, at Liverpool. A glance might suggest that Marseilles would be an inefficient port, but the contrary is the case.

I could go on almost indefinitely listing ports that differ as greatly from these as these differ from one another, but I could hardly show more clearly how diverse are the problems to be solved by the designers and builders of ports. There are many books, of which “Ports and Terminal Facilities,” by Roy S. MacElwee, Ph. D., is one, that discuss the numerous economic, engineering, and structural phases of ports, and to these I refer the person interested in the technicalities of port design, construction, and operation. This outline, being consciously non-technical and limited, must pass on to other things.

What is most obvious to the casual observer at a busy port is the great and varied stream of shipping that seems for ever on the move. For a moment I shall turn to this collection of ships in order to explain the uses of the different types and the necessity for them.

A ship arrives in a busy port from a foreign country. The ship is large and is designed so as to be easily handled at sea. She is not, however, easy to handle in the restricted and crowded waters of a port. It takes a quarter- or a half-mile circle for her to turn around in, if she is under way, and she is not entirely to be trusted if the tide catches her in narrow waters. A collision may result, and so there are tugboats which, among their numerous duties, are employed to towher about the harbour, or to assist in turning her, or to push her awkward nose across the sweep of the tide in order that she may enter a dock or swing into a narrow slip.

A MODERN VENETIAN CARGO BOATThis is hardly more than a barge, with a sail plan of a modified form, somewhat suggesting the lateen rig common in the Mediterranean, and something like the lug sails common in French waters.

A MODERN VENETIAN CARGO BOATThis is hardly more than a barge, with a sail plan of a modified form, somewhat suggesting the lateen rig common in the Mediterranean, and something like the lug sails common in French waters.

A MODERN VENETIAN CARGO BOAT

This is hardly more than a barge, with a sail plan of a modified form, somewhat suggesting the lateen rig common in the Mediterranean, and something like the lug sails common in French waters.

This is hardly more than a barge, with a sail plan of a modified form, somewhat suggesting the lateen rig common in the Mediterranean, and something like the lug sails common in French waters.

Tugs are even more necessary when sailing ships appear, for a large sailing ship without auxiliary power is hard to handle in a crowded and narrow harbour. Barges, too, require outside power, which the tugs furnish, for few barges have power of their own. Canal boats are barges of a sort, and once in a port can no longer depend upon the mule teams that tow them through canals. So the tug’s life is a busy and a varied one. It swings on the end of a huge hawser in its attempt to keep theLeviathanor theMajesticfrom sideswiping a pier. It tows barges loaded with coal, or piled high with any other kind of cargo. It tows a stringof empty and wall-sided canal boats up the river, or steams along with one lashed to each side. Tugs carry no cargo, but they are for ever straining at hawsers in their energetic furthering of commerce.

Lighters are of any size and of a great variety of shapes. In New York they are likely to be capable of carrying from three hundred to six hundred or seven hundred tons of freight, and are merely huge scows, their sides parallel, their ends square, their decks slightly overhanging the water at bow and stern. Often there is a small deck house for the accommodation of the “crew,” which generally consists of one man, who serves as watchman, and also handles the lines as the lighter is made fast to tugs or piers or to the sides of other vessels. Other ports have other types of lighters. In Hamburg they range in size from comparatively small boats to comparatively large ones. The small ones, and even some of the larger, are often propelled along the shallow canals of the port by poles, or are pulled along the quays by men to whom lines are passed. These Hamburg lighters are often built of steel (the New York lighters are usually of wood) and have pointed bows and sometimes pointed sterns. They are broad and sturdy, some have decks, some covered decks, and some are open. In bad weather the freight on these open lighters is covered by tarpaulins. It is interesting that the largest Hamburg lighters about equal in size the smallest New York lighters. In vessels so simple as lighters are, there can be few differences save those of size and general shape, so one will find that most lighters fall into one or the other of the types I have mentioned. They are sometimes loaded directly from ships. They may be loaded from freight put ashore on piers, quays, at grain elevators and ore pockets. At some ports where the draft of water does not permit a heavily laden ship to enter, the lighters are sent out to where the ship is at anchor and“lightens” her, if she is discharging, or takes her her cargo if she is loading. Lighters, then, are floating delivery wagons, subject to many uses.

Canal boats hardly require much space. They are merely barges whose uses are largely restricted to canals. They have no power of their own, and their journeys are generally at the end of a towline hitched to a mule or a team which walks along a tow path beside the canal. They are unbeautiful but useful, and usually have a deck house for the use of the bargeman, who is often accompanied by his wife and children. There are no masts from which to spread sails or fly signal flags, but in lieu of this, one sometimes sees the housewife hanging out her washing on a clothesline stretched wherever she can place it. In their attempt to secure the comforts of home the bargeman’s family is likely to have with it a dog or a couple of pigs, and sometimes both. Such a collection of human and animal passengers can live on a canal boat with a considerable degree of comfort, for the dangers of the sea are not for them. Although life on a canal boat is subject to some handicaps, at least it does not include danger from high seas and uncharted reefs.

The introduction of the gasolene engine has made possible successful small boats, of almost every size and shape, speedy, slow, seaworthy, or cranky, depending on their design or lack of design. They scoot everywhere on a thousand errands and add a nervous note to ports that otherwise would seem to be calm and self-possessed. These motor boats are infinite in number and are put to every use. Here, however, I shall not do more than recognize the very apparent fact that they exist.

These vessels I have named are all a port would need to take care of its overseas commerce. Most ports, however, are busy with an infinite number of other ships engaged in coastwise or inland trade. River steamers, fishermen, ferryboats,and coasting freighters are perhaps commoner than ocean-going ships. Then, too, one sometimes sees a floating grain elevator, not dissimilar in appearance to some grain elevators ashore. There are water barges, which supply ships with fresh water. There are dredges, seemingly for ever at work. There are glistening yachts and frowning warships. There is everything that floats rubbing elbows with everything else that floats, and yet despite the seeming confusion, the whole port is orderly, and seldom indeed are there collisions or accidents to mar the smoothness of the flow of commerce.


Back to IndexNext