Globe of Christian Heyden, 1560.Fig. 67. Globe of Christian Heyden, 1560.
Fig. 67. Globe of Christian Heyden, 1560.
Doppelmayr likewise gives us a brief biographical note referring to one Johannes Praetorius, a globe maker, born at Joachimsthal in the year 1537.311After a considerable period of study, chiefly at Wittenberg, where he turned his attention to the philosophical and mathematical sciences, he took up a residence in Nürnberg in the year 1562. Here he became interested in the construction of mechanical and astronomical instruments, and soon won the favor of the Emperor Maximilian II, which favor he enjoyed to the end of that Emperor’s reign. It was about the year 1576 that he became a professor of mathematics at Altdorf, where he died in the year 1616. Doppelmayr refers to a number of the mathematical and astronomical instruments constructed by him, noting that in the year 1566 he completed two globes of metal richly gilded, each having a diameter of 11¼ inches, that each was furnished with an hour circle, a movablequadrant and semicircles, and that a compass was set in the base of each. We learn also from the same biographer that in the year 1568 he completed a brass astrolabe having a diameter of “one schuh” (foot?), three and one half inches, and that it was supplied with all parts essential to a complete apparatus of its character. We are further informed that shortly after the beginning of his career in Altdorf he undertook the construction of a large celestial globe of wood and paper, having a diameter of four Nürnberg feet, that he was assisted in this work by the artist and draughtsman, Christopher Heinrichs, and that on the surface of the sphere one thousand six hundred and fifty stars were indicated with appropriate accompanying inscriptions.
Two pairs of Praetorius’ globes are now known, one pair in the Mathematical Salon of Dresden (Fig.68),312and the other in the Germanisches National Museum of Nürnberg. These globes are of brass, each having a diameter of 28 cm.; each is supplied with meridian, horizon, and hour circles and rests on a tripod base. They are richly engraved pieces, the terrestrial example being remarkably well preserved, the celestial being slightly injured, through rubbing which has removed parts of certain figures of the constellations.
Globe of Johannes Praetorius, 1566.Fig. 68. Globe of Johannes Praetorius, 1566.
Fig. 68. Globe of Johannes Praetorius, 1566.
Among those Italians who, in the sixteenth century, acquired well-merited fame as globe makers may be mentioned Ignazio Danti (1536-1586),313known as Pellegrino before he entered the order of the preaching friars in his nineteenth year. The name Danti appears to have been given him chiefly on account of his great learning, particularly in the field of mathematics and astronomy. In the same branches of science his father had achieved distinction, and likewise his grandfather, Vicenzo de Rinaldi, who, in the year 1571, issued a translation of the ‘Sfera’ of Sacrobosco, and who constructed, as we are told, an astrolabe and an armillary sphere.314It seems to have been early in the year 1563 thatDanti was called to Florence by Duke Cosimo for the purpose of constructing, under his patronage, nautical and astronomical instruments and geographical maps. Of his work which is still known to us there may be first mentioned an astronomical quadrant placed on the façade of the church of Santa Maria Novella, and an equinoctial armilla placed within the same church. We have first mention in Vasari’s ‘Lives’ of the globe and map work of his which especially concerns us here. It is an interesting account of his activity in this field, an account worthy of citation. “Fra Ignazio Danti is very learned in cosmography and a man of distinguished ability in letters, in so much that the Duke Cosimo has committed to his care a work than which none more perfect in design, or more important in the results to be expected from it, has ever been executed in that kind. His excellency has caused a room of considerable extent to be prepared on the second floor of his palace, as a continuation of, and an addition to the guardaroba; around this room he has had cabinets arranged seven braccia high, and richly carved in walnut wood, intending to place within them the most valuable and beautiful works of art in his possession; and on the doors of the same he has caused fifty-seven pictures, about two braccia in height and of proportionate width, to be painted in oil on wood in the manner of miniatures. The subjects delineated are the Ptolemaic Tables, measured by Don Ignazio with the most exact perfection, and corrected according to the latest authorities; sea-charts of the utmost accuracy are added, the scale and the degrees being adjusted with all possible care, and all having the ancient, as well as the modern, names; the division made of these works being as follows. At the principal entrance into the room are seen four pictures executed on the sides of the cabinets, and representing in perspective the halves of four spheres, those below showing the earth, and those above the heavens with all their signs and celestial figures. Proceeding toward the right we have all Europe depicted in fourteen compartments, thepictures succeeding each other to the center of the wall which is at the head of the room, and opposite to the principal door, that namely whereon is placed the horologue with its wheels, and the daily motions made by the planets in their spheres; I mean that so much renowned clock made by the Florentine Lorenzo della Volpaja. Above the compartments representing Europe, are those of Africa in eleven divisions; these extend to the horologue itself, beyond which and on the lower part is Asia, which occupies a consecutive range of four compartments, extending to the principal door. There are besides the West Indies, which commence from the clock, and continue to the principal door; the whole series forming the fifty-seven divisions before mentioned. On the lower part of the walls and immediately beneath the geographical delineations, in an equal number of compartments will be the various plants and animals produced by the respective countries, all depicted from nature. Over the cornice of the said cabinets, which completes the decorations, there are to be niches dividing the pictures, and in these will be placed certain antique busts in marble, representing the Emperors and Princes by whom these lands have been possessed, so far as those portraits are known to exist or can be procured. The ceiling is entirely in carved wood-work, and within the compartments of the same are twelve large pictures, in each of which are to be four celestial signs, making in the whole forty-eight; the figures are to be but little less than life size, each accompanied by its stars. On the walls beneath are three hundred portraits of distinguished persons belonging to the last five centuries, or somewhat more; they are painted in oil; but, that I may not make too long a story, I refer the mention of their names to the tables of my work. All have frames of similar size, very richly carved in oak, and producing an exceedingly fine effect.”
“In the two pictures occupying the center of the ceiling, each of which is four braccia wide, are the celestial signs;these can be thrown back by means which cannot be perceived; and in a space representing the concave are to be two large spheres, one representing the earth: this will be made to descend by a concealed windlass, and will then be balanced on a support adequate to that purpose, so that when fixed, all the pictures and the maps on the cabinet will be reflected therein, each part being thus readily found on the sphere. On the other globe the forty-eight celestial signs will be arranged, in such sort that all the operations of the astrolabe may be performed most perfectly by the aid thereof. The plan of this work has proceeded from the Duke Cosimo, who desired to have all these parts of the earth and heaven brought for once fairly together in their just positions, exactly and without errors, to the end that they might be observed and measured, either apart or all together, as might be desired by those who study and delight in this most beautiful science. I have therefore thought myself bound to make a memorial of the same in this place, for the sake of Fra Ignazio; and that his ability, with the magnificence of that great Prince, who has judged us worthy to enjoy the benefits of so honorable a labor, may be made known to all the world.”315
Danti must have undertaken this great work shortly after his arrival in Florence, since one of his maps, to which Vasari refers, is dated 1563, and it appears that the terrestrial globe must have been finished by 1567, since the general Depositaria of that year, as cited by Badia, records that twenty lire were paid to the gold-leaf maker, Taddeo di Francesco, for the five hundred leaves of gold to be used for the globe, and there is no succeeding entry referring to this particular piece of work.316We know that he never completed the task which had been assigned to him. Duke Cosimo’s death occurred in the year 1575, and his son and successor, Francesco, manifested but little interest in furthering the cause of science. It was perhaps at the instance of Francesco that the general of the Dominican Orderdirected Danti to leave Florence, and he passed the remainder of his days in Bologna. Apparently but thirty of the fifty-seven maps which were to be made by Danti were completed at the time of his dismissal, and only the terrestrial globe. As evidence that he did not construct the celestial globe, Badia cites a letter written by Antonio Lupicini to the Grand Duke Ferdinand, dated October 27, 1587. After reference to certain great works planned by Cosimo in the last years of his life, such as those referred to by Vasari, he adds that “when it seemed that nothing else was to be seen in the room, at a certain sign these historical representations disappeared and the cosmography of the whole mechanism, constructed after the manner of Ptolemy, was uncovered; in doing so they opened the ceiling and let down the representations of the planets, resting them on a stand which came out of the floor, and from the floor also appeared a terrestrial and a celestial globe each three and a half braccia in diameter, one of which had been made by Fra Ignazio, and the model of which I myself have.”317The terrestrial globe, at first placed in the room for which it was intended, was later removed to the gallery, where on account of much handling it was greatly injured, and in the year 1595 the cosmographer, Antonio Santucci, was entrusted with its restoration.318Admired as it has been for more than three hundred years, on account of its size and excellent workmanship, repeatedly handled through all these years by careless visitors, a second restoration was undertaken a few years since by Ferdinando Meucci, director of the museum to which it finally passed. Meucci directed this work with great care, studying minutely the construction of the globe under the opportunity thus offered. Fiorini, citing information especially given him by Meucci,319says that the diameter of this globe is 2.04 m.; that the ball is of wood having a papier-mâché covering, protected without by a wrapping of cord and metal plates, and that it is very substantially braced within. Danti himself in describing the constructionof the globe, on receiving an order for a similar one, says that “the surface of this globe is thirty-six square braccia and it is supported within by an iron frame, as a globe of this size would not stand without bracing; it represents a new invention by means of which, though large, it can be moved in every direction with a single finger, and its pole can be easily elevated or depressed.”320These Medici globes, it seems, attracted much attention, and not alone in Italy. Pontanus, in the preface of his edition of Hues’ ‘Tractatus de Globis,’ after a reference to the celestial globe of Tycho Brahe, six feet in diameter, adds that Ferdinand I of Tuscany possessed two globes, one terrestrial and the other an armillary sphere with circles and orbs, and that these globes were constructed by the same hand.321This last statement we now know to be an error, since the terrestrial globe alone was the work of Ignazio Danti, the armillary sphere being the work of Antonio Santucci.
The Biblioteca Nationale of Turin possesses a unique and highly interesting globe signed “Franciscus Bassus Mediolanensis feccit 1570,” called Basso in his day, although his name appears to have been Francesco Pelliccioni or Pilizzoni.322In this we have one of the finest examples of the style of constructing and ornamenting metal globes, described by Ruscelli asagemina, in which gold and silver threads and plates are forced into the engraved outlines on the surface of the ball.
The globe, a hollow iron sphere about 56 cm. in diameter, is in an excellent state of preservation. The engraved parallels and meridians are indicated at intervals of ten degrees, the prime meridian passing through the Canary Islands. It has thus been described by the librarian, Francesco Carta:323“The parts of the globe in gold are the equator, the tropics, the polar circles and many mountain chains; the known and the unknown polar regions are flaked with gold. In gold are the crowns which designate the several kingdoms, the small islands and the graduated prime meridian. In gold and silverare the ships which sail the seas, the smaller being entirely of gold. The ecliptic, the meridians excepting the prime meridian, the parallels, the majority of the mountain chains of the unknown lands, the rivers, as well as the outlines of the lands and the seas. On the graduated horizon circle are the Latin names of the winds in silver capital letters. These are the twelve winds of Timostene. A graduated metal meridian passes through the poles and is attached to the rational horizon which is supported by four small pyramidal columns having quadrangular bases. At the top, and fastened to the framework of the globe with a silver ribbon, is a silver heart having extended wings, the feathers of which are of gold and silver. From this heart rises a small gilded design representing an olive branch, having leaves of gold. From the lower part of the support hang silver ribbons flaked with gold.” Practically all inscriptions are in silver capital letters, the majority being in Latin, but a few are in Italian and in Spanish. To North America which is connected with Asia, in accord with the idea so prevalent in the second quarter of the century, is given the name “Asia magna quae India borealis,” and to South America the name “America Nova.” In addition to the above inscriptions we find such as “Hispania Major,” “G. d. Anian,” “Oceanus Indicus,” “Sinus Magnus Aphricae.” In Brazil is the inscription, “His Leoni Copia.” The inscription “Terra Australis recenter inventa anno 1499, sed nondum plene cognita terra,” closely resembles an inscription similarly placed on the world map of Orontius Finaeus of 1531, which reads “Terra Australis recenter inventa sed nondum plene cognita.”324It does not appear that great scientific value attaches to this globe, since there clearly was no attempt to produce a terrestrial map to date. It, however, is a most interesting example of globe construction in a day when globes were so much in favor.
The Lancisiana Biblioteca of Rome possesses an artistically constructed armillary sphere, apparently the work ofGiovanni Maria Barrocci, who, in the second half of the sixteenth century, achieved distinction as a maker of watches and of mathematical instruments. Fiorini gives reason for thinking this to be of about the year 1570, as well as reason for attributing the work to Barrocci,325finding it in an epitaph of a member of the family in which there is allusion to the construction of a celestial globe for Pope Pius V.
Two globes, one celestial attributed to Hieronymo de Boncompagni, and one terrestrial attributed to Emanuele Filiberto and probably constructed about the year 1570, are briefly referred to by Fiorini as belonging to the Osservatorio del Collegio Romano.326Further reference to these globes has not been obtainable, there being no mention of the same in a communication received by the author from this observatory.
The Biblioteca Nationale Vittorio Emanuele of Rome possesses two remarkably fine manuscript globes, a terrestrial and a celestial, the latter bearing the inscription “Anno Jobel3271575 ad que supputatae sunt stellae.” “In the Jubilee year for which the positions of the stars have been computed.” While not giving with certainty the exact date of their construction, it seems that it could not have been later than that given in the legend. The globes bear the coat of arms of the Jesuits, which may only suggest that the maker was a member of that order. Each of these globes, or globe balls, is constructed of a wooden framework, covered with a preparation of plaster, over which has been added a coat of thick varnish. On the surface thus prepared the map has been drawn and painted in colors. Each has a diameter of about 70 cm., is mounted on a pyramidal base, 77 cm. in height, from which rises a rod 45 cm. in length, supporting two semicircles which serve as a direct base support for the iron horizon circle. The celestial globe has represented on its surface the equator, the tropics, the polar circles, the colures, the ecliptic, and the zodiac, and the figures representing the several constellations. These figures are veryartistically painted, having their several names written in gold in the Latin language; some figures and names unfortunately are wanting by reason of injury to the surface of the globe. On the terrestrial globe the equator, the tropics, and the polar circles are represented, while but two meridians are indicated, the prime meridian passing through the Canary Islands while the other has been drawn ninety degrees from this, that is, cuts it at right angles at the poles.
The Biblioteca Laurentiana of Florence possesses four small armillary spheres, bearing neither date nor author legends.328The larger of these has a diameter of about 32 cm., is of brass, and rests upon an artistic support composed of a group of bronze satyrs. The other three, by reason of their close resemblance, appear to be the work of the same artist. Each has a diameter of about 23 cm. and a base of brass on which stands a small bronze statue, which bears on its shoulders a globe. This globe supports the several circles composing the armillary sphere. The supporting statue in one of these is clad and is represented as wearing sandals on the feet, supposedly representing the mythical Atlas. In another of these the statue is that of a man resting on the right knee with the left hand uplifted, while in the third the statue is that of a woman resting upon the left knee, having the right hand uplifted. These globes are reported as not being in good condition, but each exhibits artistic merit of a high order.
There is likewise to be found in the Biblioteca Nationale of Florence a small celestial globe of bronze, and a celestial and terrestrial globe of silver. These globes are neither signed nor dated but are thought to belong to the period now under consideration. The bronze globe has the constellations represented in relief. It is exceedingly small, having a diameter of about 10 cm. The silver globes have diameters about half the preceding, or about 4.5 cm. They are furnished with horizon and meridian circles, and have mountings which clearly are modern. The several constellationsrepresented on the celestial globe are exceedingly well done, as are all of the decorative figures appearing on the terrestrial globe. Geographical names are necessarily few because of the size of the globe.
Attention has been called to the references which Ruscelli makes in his ‘Geografia’ to globe construction.329Notice may likewise here be called to a similar reference, though much more brief, made by Francesco Maurolico, a native of Messina, and often referred to as the new Archimedes, because of his great fame acquired in the field of mathematics and astronomy. In his work, published in the year 1575,330he devoted part of one chapter to the subject “De sphaera solida,” describing the construction of a celestial globe, and the use of the same. We have no evidence that he was ever engaged in the construction of such instruments as aids in the study of his science.
Lastly, in this chapter, mention may be made of the work of Mario Cartaro. It appears that with his work that of the Italian globe makers of the century practically came to a close; the names of but two or three appear in the last quarter.
Cartaro first achieved distinction as a designer and engraver in Rome, where he issued a work containing the portraits of the first twenty-four Roman Emperors.331From Rome it appears that he went to Naples, where he continued to reside until the time of his death. That he was much favored in Naples is attested by the fact that he was given a commission to design or to represent all places and plants in the kingdom, and to receive for the same “ten scudi per month.”332It is probable that as a result of this commission we have that fine manuscript atlas of thirteen maps now belonging to the Biblioteca Nationale of Naples, representing the provinces of the kingdom and signed “M. Cartaro F. 1613.”333This manuscript gives striking evidence of his cartographical ability. The manuscript is of paper, its first map representing the ancient kingdom of Naples, on whichis placed the Spanish coat of arms. The remaining twelve represent the following named provinces: Terra di Lavorro, Principato Citra, Principato Ultra, Basilicata, Calabria Citra, Calabria Ultra, Terra d’Otranto, Terra di Bari, Capitanata, Contado di Molise, Abruzzo Citra, Abruzzo Ultra.
Cartaro’s globes are of solid wood about 16 cm. in diameter, the balls being covered with engraved gore maps. On his celestial globes appears the inscription, “Marius Cartarus Viterbensis Autor incidebat Romae cũ priv. 1577.” The twelve or rather twenty-four half gores, since they are cut on the line of the ecliptic, are copper engraved. The equator, the tropics, the polar circles, and the colures are represented, the ecliptic and the equator being graduated, the degrees being alternately colored red and yellow. The several constellations are well drawn, are colored yellow with shading, and stand out prominently against a blue background representing the sky. His terrestrial globes bear the inscription “Marius Cartarus Viterbensis Autor incidebat Romae MDLXXVII cum privilegio,” the gores being divided, as in the preceding, into twenty-four. Meridians and parallels are drawn at intervals of fifteen degrees, alternate degrees being colored red and yellow, the prime meridian passing through the Canary Islands and being graduated. In the Osservatorio del Collegio Romano may be found two copies of the celestial and one example of the terrestrial globe, one of the former once belonging to the astronomer, Virgilio Spada, and later to the Biblioteca Vallicelliana. Neither of these globes is well preserved, the original mountings are wanting, and each rests on a base of wood which has been merely designed to serve as a support.
A copy of the celestial globe may be found in the Museo di Strumenti Antichi of Florence, which was presented to the museum by the Grand Duke Leopold I. This example is reported to be in good condition, being mounted on a base of wood, and having a horizon and a meridian circle of wood, both of which are graduated. On the horizon appear thenames of the eight principal winds, with representations of the wind heads having distended cheeks.
A fairly well-preserved example of the terrestrial globe (Fig.69) was recently purchased by Mr. Reed of New York City, by whose courteous permission it was photographed for reproduction in this work. It has a single pedestal base which is gilded, is furnished with horizon and meridian circles, the former being supported by two semicircles, which in turn rest on the pedestal base. Practically all of the inscriptions are in capitals, and all of the work of the engraver has been very artistically done. The outline of the New World resembles closely that given by Mercator and by Zaltiari. In North America we find interestingly represented a great lake drained by two rivers, apparently, but not accurately drawn as the Mississippi and the St. Lawrence. The southwestern part is called “Nova Spagna,” Mexico is designated as “Nova Galitia”; in the northeast we find “La Nova Franza,” and “Terra de Norũbeca,” and in the southeast “Florida,” although the peninsula is not well drawn. South America bears the name “America,” so drawn as practically to cover the continent, and in addition we find “Castiglia de Loro,” “Para,” “Peru Provin,” “Chili,” and lake “Tichia,” located well inland. It will be noted in the reproduction that the sphere is well shot through by the industrious book- or woodworm.
Terrestrial Globe of Mario Cartaro, 1577.Fig. 69. Terrestrial Globe of Mario Cartaro, 1577.
Fig. 69. Terrestrial Globe of Mario Cartaro, 1577.
290See his catalogue No. XLII, item 133; also catalogue No. L, item 327. Nordenskiöld. Facsimile Atlas. Plate XL reproduces the terrestrial globe gores.
290See his catalogue No. XLII, item 133; also catalogue No. L, item 327. Nordenskiöld. Facsimile Atlas. Plate XL reproduces the terrestrial globe gores.
291Marcel, G. François De Mongenet, géographe franc-comtois. (In: Bulletin de géographie, historique et descriptive. Paris, 1889. pp. 31-40.); Günther, S. Die mathematischen Sammlung des Gesmanischen Museums zu Nürnberg. (In: Leopoldina, Heft 14, p. 110.)
291Marcel, G. François De Mongenet, géographe franc-comtois. (In: Bulletin de géographie, historique et descriptive. Paris, 1889. pp. 31-40.); Günther, S. Die mathematischen Sammlung des Gesmanischen Museums zu Nürnberg. (In: Leopoldina, Heft 14, p. 110.)
292See above, p. 129.
292See above, p. 129.
293Vasari, op. cit., Vol. III, pp. 500, 512, 514.
293Vasari, op. cit., Vol. III, pp. 500, 512, 514.
294Ruscelli, G. La geografia di Claudio Tolomeo Alessandrino monumente tradotta di greco in italiano. Venezia, 1561. p. 32.
294Ruscelli, G. La geografia di Claudio Tolomeo Alessandrino monumente tradotta di greco in italiano. Venezia, 1561. p. 32.
295See above, p. 122.
295See above, p. 122.
296Joppi, V. Pittori e scultori. Venezia, 1881. p. 86.
296Joppi, V. Pittori e scultori. Venezia, 1881. p. 86.
297Fiorini, M. Le projezioni delle carte geografiche. Bologna, 1881. Chap. vi, §5; same author. Le projezioni cordiformi nella Cartografia. (In: Bolletino della Società Geografica Italiana. Roma, 1889. pp. 554-579.)
297Fiorini, M. Le projezioni delle carte geografiche. Bologna, 1881. Chap. vi, §5; same author. Le projezioni cordiformi nella Cartografia. (In: Bolletino della Società Geografica Italiana. Roma, 1889. pp. 554-579.)
298Joppi, op. cit., pp. 71 ff.
298Joppi, op. cit., pp. 71 ff.
299The title-page reads, Della grandezza della terra et dell’ acqua. Trattato di M. Alessandro Piccolomini, nuovamente mandato in luce all’ Illustr. et Rev. S. Monsig. M. Jacomo Cocco Arcivescovo di Corfù. Con privilegio. In Venetia MDLVIII.
299The title-page reads, Della grandezza della terra et dell’ acqua. Trattato di M. Alessandro Piccolomini, nuovamente mandato in luce all’ Illustr. et Rev. S. Monsig. M. Jacomo Cocco Arcivescovo di Corfù. Con privilegio. In Venetia MDLVIII.
300Cardella. Memorie storiche del Cardinali della Santa Romana Chiesa. Roma, 1792. Tom. IV, p. 233.
300Cardella. Memorie storiche del Cardinali della Santa Romana Chiesa. Roma, 1792. Tom. IV, p. 233.
301Cardella, op. cit., Tom. IV, p. 173.
301Cardella, op. cit., Tom. IV, p. 173.
302Cardella, op. cit., Tom. IV, p. 287.
302Cardella, op. cit., Tom. IV, p. 287.
303Ruscelli, op. cit. See that section appearing as a second part or appendix to this work titled “Espositioni et introductioni.” Chap. ii.
303Ruscelli, op. cit. See that section appearing as a second part or appendix to this work titled “Espositioni et introductioni.” Chap. ii.
304Sanuto. Geografia di Livio Sanuto distinta in XII libri. Vinezia, 1588.
304Sanuto. Geografia di Livio Sanuto distinta in XII libri. Vinezia, 1588.
305Ruscelli. Espositioni. Chap. iii.
305Ruscelli. Espositioni. Chap. iii.
306Ruscelli. Geografia. pp. 58, 59.
306Ruscelli. Geografia. pp. 58, 59.
307Vasari, op. cit., Vol. II, p. 65.
307Vasari, op. cit., Vol. II, p. 65.
308Fiorini. Sfere terrestri e celesti. p. 218.
308Fiorini. Sfere terrestri e celesti. p. 218.
309Inventario del Reale Gabinetto redatto nel 1776, Vol. II, n. 175.
309Inventario del Reale Gabinetto redatto nel 1776, Vol. II, n. 175.
310Doppelmayr, op. cit., p. 75; Gerland, E. Beiträge zur Geschichte der Physik. (In: Leopoldina, Heft 18, p. 69.); Weidler, J. F. Historia astronomiae. Vitembergae, 1741. p. 390; Drechsler, A. Katalog der Sammlung des Königl.-Mathematisch-Physikalischen Salon zu Dresden. Dresden, 1874. p. 53.
310Doppelmayr, op. cit., p. 75; Gerland, E. Beiträge zur Geschichte der Physik. (In: Leopoldina, Heft 18, p. 69.); Weidler, J. F. Historia astronomiae. Vitembergae, 1741. p. 390; Drechsler, A. Katalog der Sammlung des Königl.-Mathematisch-Physikalischen Salon zu Dresden. Dresden, 1874. p. 53.
311Doppelmayr, op. cit., pp. 83-90.
311Doppelmayr, op. cit., pp. 83-90.
312Drechsler, op. cit., pp. 53, 54; Gerland, op. cit., p. 68.
312Drechsler, op. cit., pp. 53, 54; Gerland, op. cit., p. 68.
313Del Badia, J. Egnazio Danti cosmografo e matematico. Firenze, 1882; Marchese, R. Memorie dei più illustri pittori, scultori ed architetti Dominicani. Bologna, 1879. Vol. II, p. 357; Porena, F. La Geografia in Roma e il mappamondo Vaticano. (In: Boll. della Società Geografica Italiana. Roma, 1888. pp. 221 ff.)
313Del Badia, J. Egnazio Danti cosmografo e matematico. Firenze, 1882; Marchese, R. Memorie dei più illustri pittori, scultori ed architetti Dominicani. Bologna, 1879. Vol. II, p. 357; Porena, F. La Geografia in Roma e il mappamondo Vaticano. (In: Boll. della Società Geografica Italiana. Roma, 1888. pp. 221 ff.)
314Uzielli, G. L’epistolario Colombo-Toscanelliano e di Danti. (In: Boll. della Società Geografica Italiana. Roma, 1889. p. 836.) In this the author refers to the numerous editions of Sacrobosco translated by Rinaldi.
314Uzielli, G. L’epistolario Colombo-Toscanelliano e di Danti. (In: Boll. della Società Geografica Italiana. Roma, 1889. p. 836.) In this the author refers to the numerous editions of Sacrobosco translated by Rinaldi.
315Vasari, op. cit., Vol. V, pp. 493-496.
315Vasari, op. cit., Vol. V, pp. 493-496.
316Del Badia, op. cit., p. 30.
316Del Badia, op. cit., p. 30.
317Del Badia, op. cit., p. 28.
317Del Badia, op. cit., p. 28.
318Del Badia, op. cit., p. 31.
318Del Badia, op. cit., p. 31.
319Fiorini. Sfere terrestri e celesti. p. 179.
319Fiorini. Sfere terrestri e celesti. p. 179.
320Tiraboschi, G. Storia della litteratura italiana. Roma, 1873. Tom. VII, pt. I, lib. ii, p. 439.
320Tiraboschi, G. Storia della litteratura italiana. Roma, 1873. Tom. VII, pt. I, lib. ii, p. 439.
321Hues, R. Tractatus de globis coelesti et terrestri eorumque usu. Amstelodame, 1617. Ed. by Joannis Isaci Pontanus. See the Preface.
321Hues, R. Tractatus de globis coelesti et terrestri eorumque usu. Amstelodame, 1617. Ed. by Joannis Isaci Pontanus. See the Preface.
322Moriggia, R. P. F. La nobilita di Milano. Milano, 1595. Lib. V, cap. xvii.
322Moriggia, R. P. F. La nobilita di Milano. Milano, 1595. Lib. V, cap. xvii.
323Fiorini. Sfere terrestri e celesti. p. 184; Kretschmer, K. Die EntdeckungAmerikas in ihrer Bedeutung für die Geschichte des Weltbildes. Berlin, 1892. p. 436, and Tav. xxix.
323Fiorini. Sfere terrestri e celesti. p. 184; Kretschmer, K. Die EntdeckungAmerikas in ihrer Bedeutung für die Geschichte des Weltbildes. Berlin, 1892. p. 436, and Tav. xxix.
324Nordenskiöld. Facsimile Atlas, plate XLI.
324Nordenskiöld. Facsimile Atlas, plate XLI.
325Fiorini. Sfere terrestri e celesti. p. 220.
325Fiorini. Sfere terrestri e celesti. p. 220.
326Fiorini. Sfere terrestri e celesti. p. 284.
326Fiorini. Sfere terrestri e celesti. p. 284.
327The word “Jobel” is thought to mean jubilee.
327The word “Jobel” is thought to mean jubilee.
328Fiorini. Sfere terrestri e celesti. pp. 497-500.
328Fiorini. Sfere terrestri e celesti. pp. 497-500.
329See above, n.294,303.
329See above, n.294,303.
330His work bears the title D. Francisci Maurolyci Abbatis Messanensis Opuscula mathematica nunc primum in lucem edita. Venetiis, 1575.
330His work bears the title D. Francisci Maurolyci Abbatis Messanensis Opuscula mathematica nunc primum in lucem edita. Venetiis, 1575.
331Gori-Gandellini, G. Notizie storiche degli intagliatori. Siena, 1771. Tom. I, p. 25.
331Gori-Gandellini, G. Notizie storiche degli intagliatori. Siena, 1771. Tom. I, p. 25.
332Archivo Storico della Provincie Napoletane. Anno primo Napoli. 1876. p. 405.
332Archivo Storico della Provincie Napoletane. Anno primo Napoli. 1876. p. 405.
333Fiorini. Sfere terrestri e celesti. p. 191. See for catalogue reference Sala dei MSS. Scaffale XII, palchetto D, n. 100.
333Fiorini. Sfere terrestri e celesti. p. 191. See for catalogue reference Sala dei MSS. Scaffale XII, palchetto D, n. 100.
Compass Rose. From Martines Atlas, 1582,
Brief summary of sixteenth-century globe making.—The close of the century introducing us to the great Dutch globe makers.—The clock maker Dasypodius.—Peter and Philip Apianus.—The armillary sphere of Carlus Platus.—Roll and Reinhold.—Tycho Brahe and his influence.—Titon du Tillet.—The terrestrial globe of Rouen.—Globes of Emery Molyneux.—Globes of Bürgi.—Zürich globe.—Beaker globes.—Ivory globe of Antonio Spano.—The Van Langren globes.—Santucci.—B. F. globe of Dresden.
Brief summary of sixteenth-century globe making.—The close of the century introducing us to the great Dutch globe makers.—The clock maker Dasypodius.—Peter and Philip Apianus.—The armillary sphere of Carlus Platus.—Roll and Reinhold.—Tycho Brahe and his influence.—Titon du Tillet.—The terrestrial globe of Rouen.—Globes of Emery Molyneux.—Globes of Bürgi.—Zürich globe.—Beaker globes.—Ivory globe of Antonio Spano.—The Van Langren globes.—Santucci.—B. F. globe of Dresden.
INthe last three chapters attention has been called to the globes and globe makers of the earlier years of the sixteenth century, special mention having been made in Chapters VI and VII of the notions entertained concerning the geography of the New World as exhibited in the terrestrial globe maps. In the first quarter of the century, as was stated, the newly discovered lands were represented as having no geographical connection with the Old World, and with few exceptions the two continents of the western hemisphere were separated from each other either by a strait or by a wide expanse of ocean. In the second quarter of the century the belief seemed to have found very general acceptance that the New World was but a prolongation or eastward extension of the Asiatic continent, a belief which found expression in the plane as well as in the globe maps. Exceptions to such belief were likewise noted, as was also the inclination manifesting itself in this second quarter to returnto the earlier notions, that a great body of water separated Asia from the northern continent, in the spread of which notion Mercator seems to have exerted a dominating influence. In the third quarter of the century the globe maps indicate that a belief in the independent position of the New World had again found very general acceptance, although there appeared now and then an expression in the maps that the theory of an Asiatic connection still lingered. In this third quarter it was the Italian globe makers who were the most active, yet it must be admitted that the majority of the globes produced in these years in the peninsula were not of striking importance. In the literature of the period, references to globes which were constructed, and which appear to have been well known, are not infrequent, but one is inclined to a belief, based upon these references, and upon those globes which are extant, that time has destroyed the best of them.
The records of the last quarter of the century, of which we come now to speak in this chapter, seem to show a decline of interest in globe making among the Italians, the examples of their work left to us being exceedingly few. We note a rising interest and activity in globe making in the North in this period, which reaches a climax during the early years of the seventeenth century in the splendid work given out by the great masters of the Netherlands. A well-merited fame especially crowns the labors of members of the Van Langren, the Blaeu, and the Hondius families.334
Although remembered chiefly for his part in the construction of the famous Strassburg cathedral clock, Conrad Dasypodius (1530-1600) can also claim a place among the globe makers of his day, that is, of the period we now have under consideration.335He was the son of Petrus Dasypodius, a native of Frauenfeld in Switzerland, whose name originally was Rauhfuss or Hasenfuss, and who for some years held a position as professor of the Greek language in Zürich. In the year 1530 he removed to Strassburg to accept a similarposition in the Strassburg Academy, where he died in the year 1559. Young Conrad, after an association for a period with the then famous Strassburg mathematician, Christian Herlin,336as his favorite pupil, traveled extensively, going to Paris and later to Lyons, where he continued his mathematical studies. In October, 1562, he became the successor of Herlin, and in the year 1563 canon of St. Thomas. To the impulse which he contributed to mathematical studies is due the high place held for a considerable period by the Strassburg Academy.337It is a part of his great service that he not only encouraged the study of the Greek mathematicians, but he also was especially interested in having their works brought to the attention of the public through their reissue, especially the works of Euclid. The list of Dasypodius’ publications338is a long one and is such as to place him among the foremost scholars of his day, but it was, however, his astronomical clock, noted above, which brought him special renown in the larger circles. It was near the middle of the fourteenth century that the first clock, which was of wood, was constructed for the cathedral, but time had wrought its destructive work, and as early as 1547 a commission was appointed to consider the question of its restoration, and of this commission Christian Herlin was a prominent member. His death in the year 1562 left the plan incomplete, and eight years passed before his pupil, Dasypodius, was successful in urging the magistrates of the city to take up the work anew. In the year 1570, through his advice, two young globe makers of Schaffhausen, Isaac and Josias Habrecht,339who had given aid to their father in the construction of the “Frohnwaagthurm Uhr” of the last-named city, together with the Schaffhausen artists, Tobias and Josias Stimmer,340were invited to take up the work under his supervision. At the end of three years the clock was completed and soon came to be referred to as one of the seven wonders of Germany. “Truly a masterpiece,” said Montucla, “and the first of its kind in all Europe by reason of the numerousmovements which it executes.”341In the year 1580 a description of the same was prepared and published by Dasypodius himself.342Although calling for frequent repairs the clock continued running until the year 1789, when it ceased, and after fifty years had passed the old mechanism was replaced by new, the work of Schwilgué.343Remarkable as is the entire masterpiece, it is the globes with which Dasypodius furnished it that especially interest us here. At the base of the clock is placed a celestial sphere (Fig.70) three feet in diameter, supported by four columns of wood richly carved. On the surface appear the forty-eight Ptolemaic constellations, each constellation having its appropriate figure, and the 1022 stars which had been located in Ptolemy’s day. The globe is so connected with the machinery, by which the various parts of the clock are made to perform their functions, that it makes one revolution on its axis every twenty-four hours, thus representing the rising and the setting of the several celestial bodies. Two circles were added, one carrying the sun and the other the moon, adjusted so as to turn about the globe, the first in twenty-four hours, and the second in about twenty-five. The arrangement of the movements, it appears, was not greatly altered in the reconstruction of 1838-1842, and the clock, as it now stands, is thus described by Britten: “On the floor level is a celestial globe indicating siderial time. In its motion round its axis the globe carries with it the circles that surround it—namely, the equator, the ecliptic, the solstitial and equinoctial colures, while the meridian and horizon circles remain motionless, so that there are shown the rising and the setting, as well as the passage over the meridian of Strassburg, of all stars that are visible to the naked eye, and which appear above the horizon. Behind the celestial globe is the calendar; on a metallic band, nine inches wide and thirty feet in circumference, are the months and the days of the months, Dominical letters, fixed and movable feast days. The band is shifted at midnight, and a statue of Apollo points out the day of the month andthe name of the saint corresponding to that day. The internal part of the annular band indicates true solar time, the rising and the setting of the sun, the diurnal motion of the moon around the earth, and its passage over the meridian, the phases of the moon and the eclipses of the sun and moon. Adjacent compartments are devoted to a perpetual calendar, solar and lunar cycles and other periodic occurrences, solar and lunar equations, etc. Above the calendar appear allegorical figures, seated in chariots, and representing the days of the week. These chariots, drawn by such animals as are assigned as attributes of the divinities, run on a circular railway and appear each in order. In the story above the globe is a planetarium in which the revolutions of the planets are represented upon a large dial plate, and above the planetarium, and upon a star-decked sky, is a globe devoted to showing the phases of the moon. In the second story of the clock has been placed a terrestrial globe, which likewise is adjusted to revolve in representation of the revolution of the earth.”344