The principal use of pyrite is in the manufacture of sulphuric acid. Large quantities of acid are used in the manufacture of fertilizers from phosphate rock, and during war times in the manufacture of munitions. Sulphuric acid converts the phosphate rock into superphosphate, which is soluble and available for plant use. Other uses of the acid are referred to in connection with sulphur. Pyrite is also used in Europe for the manufacture of paper from wood-pulp, but in the United States native sulphur has thus far been exclusively used for this purpose. The residue from the roasting of pyrite is a high-grade iron ore material frequently very low in phosphorus, which is desirable in making up mixtures for iron blast furnaces.
Most of the countries of Europe are producers of pyrite, and important amounts are also produced in the United States and Canada. The European production is marketed mainly on that continent, but considerable amounts come to the United States from Spain.
Before the war domestic sources supplied a fourth to a third of the domestic demand for pyrite. Imports came mainly from Spain and Portugal to consuming centers on the Atlantic seaboard. The curtailment of overseas imports of pyrite during the war increaseddomestic production by about a third and resulted also in drawing more heavily on Canadian supplies, but the total was not sufficient to meet the demand. The demand was met by the increased use of sulphur from domestic deposits (p. 109). At the close of the war supplies of pyrite had been accumulated to such an extent that, with the prospect of reopening of Spanish importation, pyrite production in the United States practically ceased. War experience has demonstrated the possibility of substitution of sulphur, which the United States has in large and cheaply mined quantities. The future of the pyrite industry in the United States therefore looks cloudy, except for supplies used locally, as in the territory tributary to the Great Lakes, and except for small amounts locally recovered as by-products in the mining of coal or from ores of zinc, lead, and copper. Pyrite production in the past has been chiefly in the Appalachian region, particularly in Virginia and New York, and in California.
Pyrite, the yellow iron sulphide, is the commonest and most abundant of the metallic sulphides. It is formed under a large variety of conditions and associations. Marcasite and pyrrhotite, other iron sulphide minerals, are frequently found with pyrite and are used for the same purposes.
The great deposits of Rio Tinto, Spain, which produce about half of the world's pyrite, were formed by replacement of slates by heated solutions from nearby igneous rocks. The ores are in lenticular bodies, and consist of almost massive pyrite with a small amount of quartz and scattered grains and threads of chalcopyrite (copper-iron sulphide). They carry about 50 per cent of sulphur, and the larger part carries about 2 per cent of copper which is also recovered.
Similar occurrences of pyrite on a smaller scale are known in many places. Pyrite is very commonly found in vein and replacement deposits of gold, silver, copper, lead, and zinc. In the Mississippi valley it is extracted as a by-product from the lead and zinc ores, and in the Cordilleran region large quantities of by-product pyrite could easily be produced if there were a local demand. The pyrite deposits of the Appalachian region are chiefly lenses in schists; they are of uncertain origin though some are believed tohave been formed by replacement of metamorphosed limestones and schists.
Under weathering conditions pyrite oxidizes, the sulphur forming sulphuric acid,—an important agent in the secondary enrichment of copper and other sulphides,—and the iron forming the minerals hematite and limonite in the shape of a "gossan" or "iron-cap."
Pyrite is likewise frequently found in sediments, apparently being formed mainly by the reducing action of organic matter on iron salts in solution. In Illinois and adjacent states it is obtained as a by-product of coal mining.
Sulphur is used for many of the same purposes as pyrite. Under pre-war conditions, the largest use in the United States was in the manufacture of paper pulp by the sulphite process. Minor uses were in agriculture as a fungicide and insecticide, in vulcanizing rubber, and in the manufacture of gunpowder. About 5 per cent of the sulphur of the United States was used in the manufacture of sulphuric acid. During the war this use was greatly increased because of the shortage of pyrite and the large quantities of sulphuric acid necessary for the manufacture of explosives. The replacement of pyrite by sulphur in the manufacture of sulphuric acid has continued since the war, and in the future is likely to continue to play an important part. Sulphuric acid is an essential material for a great range of manufacturing processes. Some of its more important applications are: in the manufacture of superphosphate fertilizer from phosphate rock; in the refining of petroleum products; in the iron, steel, and coke industries; in the manufacture of nitroglycerin and other explosives; and in general metallurgical and chemical practice.
The United States is the world's largest sulphur producer. The principal foreign countries producing important amounts of sulphur are Italy, Japan, Spain, and Chile. Europe is the chief market for the Italian sulphur. In spite of increased demands in Europe the Italian production has decreased as the result of unfavorable labor, mining, and transportation conditions, and the deficit has had to bemet from the United States. Japan's sulphur production has been increasing. Normally about half of the material exported comes to the United States to supply the needs of the paper industry in the Pacific states, and half goes to Australia and other British colonies. Spain's production is relatively small and has been increasing slowly; most of it is consumed locally. Chile's small production is mainly consumed at home and large additional amounts are imported.
The sulphur output of the United States, which in 1913-14 was second to Italy, now amounts to three-fourths of the entire output of the world, and the United States has become a large exporter of sulphur. Supplies are ample and production increasing, with the result that the United States can not only meet its own demands, but can use this commodity extensively in world trade. Small amounts of sulphur are mined in some of the western states, but over 98 per cent of the production comes from Louisiana and Texas.
Native sulphur is found principally in sedimentary beds, where it is associated with gypsum and usually with organic matter. Deposits of this type are known in many places, the most important being those of Sicily and of the Gulf Coast in the United States. In the latter region beds of limestone carry lenses of sulphur and gypsum which are apparently localized in dome-like upbowings of the strata. The deposits are overlain by several hundred feet of loose, water-bearing sands, through which it is difficult to sink a shaft. An ingenious and efficient process of mining is used whereby superheated water is pumped down to melt the sulphur, which is then forced to the surface by compressed air and allowed to consolidate in large bins. The Sicilian deposits are similar lenses in clayey limestones containing 20 to 25 per cent of sulphur, associated with gypsum and bituminous marl; they are mined by shafts.
Concerning the origin of these deposits several theories have been advanced. It has been thought that the materials for the deposits were precipitated at the same time as the enclosing sediments; and that the sulphur may have been formed by the oxidation of hydrogen sulphide in the precipitating waters through the agency of air or of sulphur-secreting bacteria, or that it may have been producedby the reduction of gypsum by organic matter or bacteria. Others have suggested that hot waters rising from igneous rocks may have brought in both the sulphur and the gypsum, which in crystallizing caused the upbowing of the strata which is seen in the Gulf fields (see also p. 298).
Native sulphur is also found in mineral springs from which hydrogen sulphide issues, where it is produced by the oxidation of the hydrogen sulphide. It likewise occurs in fissures of lava and around volcanic vents, where it has probably been formed by reactions between the volcanic gases and the air. The Japanese and Chilean deposits are of the volcanic type.
Potash is used principally as a component of fertilizers in agriculture. It is also used in the manufacture of soap, certain kinds of glass, matches, certain explosives, and chemical reagents.
For a long time potash production was essentially a German monopoly. The principal deposits are in the vicinity of Stassfurt in north central Germany (about the Harz Mountains). Stassfurt salts are undoubtedly ample to supply the world's needs of potash for an indefinite future. However, other deposits, discovered in the Rhine Valley in Alsace in 1904, have been proved to be of great extent; and though the production has hitherto been limited by restrictions imposed by the German Government, it has nevertheless become considerable.[15]The grade (18 per cent K2O) is superior to the general run of material taken from the main German deposits, and the deposits have a regularity of structure and uniformity of material favorable to cheaper mining and refining than obtains in the Stassfurt deposits.
Other countries have also developed supplies of potash, some of which will probably continue to produce even in competition with the deposits of recognized importance referred to above. Noteworthy among the newer developments are those in Spain.[16]Thesehave not yet produced on any large scale, but their future production may be considerable. Less important deposits are known in Galicia, Tunis, Russia, and eastern Abyssinia, and the nitrate deposits of Chile contain a small percentage of potash which is being recovered in some of the operations.
Prior to the war the United States obtained its potash from Germany. The German potash industry was well organized and protected by the German Government, which made every effort to maintain a world monopoly. During the war the potash exports from Germany were cut off, excepting exports to the neutrals immediately adjoining German territory. The result in the United States was that the price of potash rose so far as to greatly diminish its use as fertilizer.
The consequent efforts to increase potash production in the United States met with considerable success, but the maximum production attained was only about one-fourth of the ordinary pre-war requirements. The principal American sources are alkaline beds and brines in Nebraska, Utah, and California, and especially at Searles Lake, California. These furnished 75 per cent of the total output. Minor amounts have been extracted in Utah from the mineral alunite (a sulphate of potassium and aluminum), in Wyoming from leucite (a potassium-aluminum silicate), in California from kelp or seaweed, and in various localities from cement-mill and blast-furnace dusts, from wood ashes, from wool washings, from the waste residues of distilleries and beet-sugar refineries, and from miscellaneous industrial wastes. At the close of the war, sufficient progress had been made in the potash industry to indicate that the United States might become self-supporting in the future, though at high cost. The renewal of importation of cheap potash from Germany, with probable further offerings from Alsace and Spain, makes it impossible for the United States potash production to continue; except, perhaps, for the recovery of by-products which will go on in connection with other industries. Demand for a protective tariff has been the inevitable result (see Chapters XVII and XVIII).
Potassium is one of the eight most abundant elements in the earth. It occurs as a primary constituent of most igneous rocks,some of which carry percentages as high as those in commercial potash salts used for fertilizers. It is present in some sediments and likewise occurs in many schists and gneisses. Various potassium silicates—leucite, feldspar, sericite, and glauconite—and the potassium sulphate, alunite, have received attention and certain of them have been utilized to a small extent, but none of them are normally able to compete on the market. Potential supplies are thus practically unlimited in amount and distribution. Deposits from which the potash can be extracted at a reasonable cost, however, are known in only a few places, where they have been formed as saline sediments.
In the decomposition of rocks the potash, like the soda, is readily soluble, but in large part it is absorbed and held by clayey materials and is not carried off. Potash is therefore more sparingly present in river and ocean waters than is soda, and deposits of potash salts are much rarer than those of rock salt and other sodium compounds. The large deposits in the Permian beds of Stassfurt, as well as those in the Tertiary of Alsace and Spain, have been formed by the evaporation of very large quantities of salt water, presumably sea water. They consist of potassium salts, principally the chloride, mixed and intercrystallized with chlorides and sulphates of magnesium, sodium, and calcium. In the Stassfurt deposits the potassium-magnesium salts occupy a relatively thin horizon at the top of about 500 feet of rock salt beds, the whole underlying an area about 200 miles long and 140 miles wide. The principal minerals in the potash horizon are carnallite (hydrous potassium-magnesium chloride), kieserite (hydrous magnesium sulphate), sylvite (potassium chloride), kainite (a hydrous double salt of potassium chloride and magnesium sulphate), and common salt (sodium chloride). The potash beds represent the last stage in the evaporation of the waters of a great closed basin, and the peculiar climatic and topographic conditions which caused their formation have been the subject of much speculation. This subject is further treated in the discussion of common salt beds (pp. 295-298).
In the United States the deposits at Searles Lake, California, have been produced by the same processes on a smaller scale. In this case evaporation has not been carried to completion, but the crystallization and separation out of other salts has concentratedthe potassium (with the magnesium) in the residual brine or "mother liquor." The deposits of this lake or marsh also contain borax (see p. 276), and differ in proportions of salts from the Stassfurt deposits. This is due to the fact that they were probably derived, not from ocean waters, but from the leaching of materials from the rocks of surrounding uplands, transportation of these materials in solution by rivers and ground waters, and concentration in the desert basin by evaporation.
The alkali lakes of Nebraska are believed to be of very recent geologic origin. They lie in depressions in a former sand dune area, and contain large quantities of potash supposedly accumulated by leaching of the ashes resulting from repeated burnings of the grass in the adjacent country.
Of other natural mineral sources, alunite is the most important. The principal deposits worked are at Marysville, Utah, but the mineral is a rather common one in the western part of the United States, associated with gold deposits, as at Goldfield, Nevada. Alunite occurs as veins and replacement deposits, often in igneous associations, and is supposed to be of igneous source. Its origin is referred to in connection with the Goldfield ores (p. 230).
[15]Gale, Hoyt S., The potash deposits of Alsace:Bull. 715-B, U. S. Geol. Survey, 1920, pp. 17-55.
[15]Gale, Hoyt S., The potash deposits of Alsace:Bull. 715-B, U. S. Geol. Survey, 1920, pp. 17-55.
[16]Gale, Hoyt S., Potash deposits in Spain:Bull. 715-A, U. S. Geol. Survey, 1920, pp. 1-16.
[16]Gale, Hoyt S., Potash deposits in Spain:Bull. 715-A, U. S. Geol. Survey, 1920, pp. 1-16.
Coal overshadows all other mineral resources, except water, in production, value, and demand. It is the greatest of the energy sources—coal, petroleum, gas, and water power. Roughly two-thirds of the world's coal is used for power, one-sixth for smelting and metallurgical industries, and one-sixth for heating purposes. Coal constitutes over one-third of the railroad tonnage of the United States and is the largest single tonnage factor in international trade; 70 per cent of the pre-war tonnage of outgoing cargoes from England was coal.
World production and trade.The great coal-producing countries of the world border the North Atlantic basin. The United States produces about 40 per cent of the world's total, Great Britain about 20 per cent, and Germany about 20 per cent. Other countries producing coal stand in about the following order: Austria-Hungary, France, Russia, Belgium, Japan, China, India, Canada, and New South Wales. There is similarity in the major features of the distribution of coal production and of iron ore production. The great centers of coal production—the Pennsylvania and Illinois fields of the United States, the Midlands district of England, and the lower Rhine or Westphalian fields of Germany—are also the great centers of the iron and steel industries of these countries. As in the case of iron ore, there is rather a striking absence of important coal production in the southern hemisphere and in Asia. A significant item in the world's distribution of coal supplies is England's world-wide system of coaling stations for shipping.
The principal coal-producing countries all have large reserves of coal. Outside of these countries the world's most importantreserves are in China, which may be looked to for great future development. For the most part, except for the probable Chinese development, it is likely that countries now producing most of the coal will continue to do so in the future, and that outlying parts of the world will continue to be supplied mainly from these countries.
The quantity and distribution of the coal reserves of the world have been estimated with perhaps a greater degree of accuracy than those of any other mineral resource. From these estimates it appears that the North American continent contains about half of the world reserves (principally in the United States, with lesser amounts in Canada) and Asia about one-fourth (principally in China, with some in India). Europe contains only one-sixth of the world total, chiefly in the area of the former German Empire and in Great Britain, with smaller quantities in Russia, Austria-Hungary, France, and Belgium. Australasia (New South Wales), Africa (British South Africa), and South America (Chile, Brazil, Peru, and Colombia), together contain less than a tenth of the total reserves. Coal being one of the great bases for modern industrialism, the large reserves of high grade-coals in China have led to the belief that China may some day develop into a great manufacturing nation. Similarly, the deficiency in coal of most of the South American and African countries seems to preclude their developing any very large manufacturing industries, except where water power is available. Coal reserves and the conservation of coal are further discussed in Chapter XVII.
The war resulted in considerable disturbances in coal production and distribution. There has not yet been a return to normal conditions, and some of the changes are probably permanent. The great overseas movement of coal from Germany was stopped and that from England curtailed. To some extent the deficiency was supplied by coal exports from the United States, particularly to South America. The shutting off of the normal German export to France and Mediterranean countries, the occupation of the French and Belgian coal fields by the Germans, and the partial restriction of German exports to Scandinavian countries, resulted in Europe's absorbing most of the British coal available for export, and in addition requiring coal from the United States. The stress in the world's coal industry to meet the energy requirementsof war is too recent and vivid to require more than mention. The world was made to realize almost for the first time the utterly vital and essential nature of this industry.
Since the war, there has been a gradual resumption of England's export of coal along old lines of international trade. The German overseas export trade has not been reëstablished, and cannot be for a long time to come if Germany fulfills the terms of the Peace Treaty. Indeed, because of slow recovery in output of German coal, there is yet considerable lag in the supply available for European countries. The terms of the Peace Treaty lessened the territory of German coal reserves and required considerable additional contributions of coal to be delivered to France, Belgium, Luxemburg, and Italy.
The increased export of coal from the United States during the war is likely to be in part continued in the future, although the great bulk of the United States production will in the future, as in the past, be absorbed locally. Most of the coal in the United States available for export is higher in volatile matter than the British and German export coal. This quality will in some degree be a limiting factor in exportation. On the other hand, it may result in wider introduction of briquetting, coking, and other processes, which will tend to improve the local industry and be conservational in their effect.
Japan will doubtless hold some of the Asiatic coal market gained during the war.
International coal relations are further discussed in Chapter XVIII.[17]
Production in the United States.The main features of the distribution of coal supplies in the United States are:
(1) Localization of the anthracite production and reserves in a limited area in the Lawton region of Pennsylvania. Low-grade anthracite coal also occurs in Rhode Island, North Carolina, Colorado, and Idaho.
(2) Localization of the bituminous production in the eastern and interior states of Pennsylvania, West Virginia, Ohio, Indiana, Illinois, and Kentucky. The principal reserves of bituminous coaloccur in the same provinces, but important additional reserves are known in Texas, in North and South Carolina, and in the Rocky Mountain and Pacific Coast provinces.
(3) The existence of large tonnages of subbituminous coal in the west, which have not been mined to any extent.
(4) The existence of large fields of lignite in the Gulf Coast region, and in the Northern Plains region, which have not been mined.
Coke.About one-sixth of the bituminous coal mined in the United States is made intocoke, that is, it is subjected to heat in ovens from which oxygen is excluded in order to drive off the volatile gases (chiefly hydrocarbons and water) which constitute about 40 per cent of the weight of the coal. The residual product, the coke, is a light, porous mass with a considerably higher percentage of fixed carbon than bituminous coal. In regard to composition, coking accomplishes artificially somewhat the same result reached by nature in its slow development of high-grade coals, but the texture of coke is far different from that of coal. Not all bituminous coals are suitable for coke manufacture; and such coals are frequently divided into two classes, known ascokingandnon-cokingcoals. Coke is used principally for smelting purposes. Because of its spongy, porous texture, it burns more rapidly and intensely than coal.
The gases eliminated in coking are wasted in the old-fashioned "beehive" ovens, but in modern "by-product" coke ovens these gases by proper treatment yield valuable coal tar products and ammonia. It is estimated that the sum of the value of the products thus recovered from a ton of coal multiplies the value of the ton of coal at the mine by at least thirteen times. The importance of this fact from the conservational standpoint cannot be too much emphasized. At present over half of the total coke produced in the United States comes from by-product ovens, and this proportion will doubtless increase in the future.
BALANCE SHEET SHOWING CONTRAST BETWEEN VALUE OF 1 TON OF BITUMINOUS COAL AT MINE AND VALUE OF PRODUCTS WHICH IT CONTAINS, BASED ON CONDITIONS PREVAILING IN 1915.1
Value of mine, 1915QuantityValue at point of production, 19151 ton (2,000 pounds)1,500 pounds smokeless fuel$5.002bituminous coal10,000 cubic feet gas,9.003contains$1.13 =at 90c. per 1,00022 pounds ammonium.61sulphate at 2.8c.2-½ gallons benzol, at 30c..7549 gallons tar, at 2.6c..234Total$1.135$15.591Gilbert, Chester G., and Pogue, Joseph E., The energy resources of the United States—A field for reconstruction:Bull. 102, U. S. National Museum, vol. 1, 1919, p. 11.2Figure based upon approximate selling price of anthracite.3Figure based upon average price of city gas.4These figures would be much higher if an adequate coal products industry were in existence.5This figure shows clearly that lowering the cost of production cannot be expected to lower the price of coal. Even if the cost of production were eliminated, the price of coal would merely be a dollar less.
Classification of coals.The accurate naming and classification of different varieties of coal is not an easy matter. The three main classes,—anthracite, bituminous, and lignite,—have group characteristics determined by their composition, color, texture, origin, and uses, and for general purposes these names have reasonably definite significance. However, there is complete gradation in coal materials from peat through lignite to bituminous and anthracite coals; many varieties fall near the border lines of the main groups, and their specific naming then becomes difficult. In addition, coal is made up of several substances which vary unequally in their proportions. It is difficult to arrange all of these variables in a graded series in such a fashion as to permit of precise naming of the coal. Furthermore, the scientific naming of a coalmay not serve the purpose of discriminating coals used for different commercial purposes. Even the commercial names vary among themselves, depending on the use for which the coal is being considered.
Thus it is that the naming and classification of coals is a perennial source of difficulty and controversy. The earliest and most widely used classification is based on the ratio between fixed (or non-volatile) carbon and volatile constituents, called the "fuel ratio." For this purpose "proximate" analyses of coal are made, in terms of fixed carbon, volatile matter, moisture, ash, and sulphur. Anthracite has a higher fuel ratio than bituminous coal; that is, it has more fixed carbon in relation to volatile matter. Similarly bituminous coal has a higher fuel ratio than lignite. The fuel ratio measures roughly the heat or calorific power of the coal, in other words, its fuel value. However, some bituminous coals have a higher calorific power than some anthracites, because a large part of their volatile matter is combustible and yields more heat than the corresponding weight of fixed carbon in the anthracite. The fuel ratio pretty well discriminates coals of the higher ranks, and gives a classification corresponding roughly with their commercial uses. For the lower ranks of coal it is not so satisfactory, because the volatile constituents of such coals contain large and varying percentages of non-combustible hydrogen, oxygen, and nitrogen. Also such coals contain larger and more variable amounts of moisture, which is inert to combustion and requires heat for its evaporation. Two coals of the lower ranks with the same fuel ratio may have very different fuel qualities and different commercial uses, because of their different amounts of inert volatile matter and of water. For these coals it is sometimes desirable to supplement the chemical classification by physical criteria. For instance, subbituminous coal may be distinguished from lignite, not by its fuel ratio alone, but by its shiny, black appearance as contrasted with the dull, woody appearance of lignite. Bituminous may be distinguished from subbituminous by the manner of weathering. Other classifications have attempted to recognize these difficulties and still maintain a purely chemical basis by considering separately the combustible and non-combustible volatile constituents. For this purpose, it is necessary to have not merely approximate analyses, but the ultimate analyses in terms of elements.
Definitions of the principal kinds of coal by Campbell,[18]of the United States Geological Survey, are as follows:
Anthracite.Anthracite is generally well known and may be defined as a hard coal having a fuel ratio (fixed carbon divided by the volatile matter) of not more than 50 or 60 and not less than 10.Semianthracite.Semianthracite is also a hard coal, but it is not so hard as true anthracite. It is high in fixed carbon, but not so high as anthracite. It may be defined as a hard coal having a fuel ratio ranging from 6 to 10. The lower limit is uncertain, as it is difficult to say where the line should be drawn to separate "hard" from "soft" coal and at the same time to divide the two ranks according to their fuel ratio.Semibituminous.The name "semibituminous" is exceedingly unfortunate, as literally it implies that this coal is half the rank of bituminous, whereas it is applied to a kind of coal that is of higher rank than bituminous—really superbituminous. Semibituminous coal may be defined as coal having a fuel ratio ranging from 3 to 7. Its relatively high percentage of fixed carbon makes it nearly smokeless when it is burned properly, and consequently most of these coals go into the market as "smokeless coals."Bituminous.The term "bituminous," as generally understood, is applied to a group of coals having a maximum fuel ratio of about 3, and hence it is a kind of coal in which the volatile matter and the fixed carbon are nearly equal; but this criterion cannot be used without qualification, for the same statement might be made of subbituminous coal and lignite. As noted before, the distinguishing feature which serves to separate bituminous coal from coals of lower rank is the manner in which it is affected by weathering.Subbituminous.The term "subbituminous" is adopted by the Geological Survey for what has generally been called "black lignite," a term that is objectionable because the coal is not lignitic in the sense of being distinctly woody, and because the use of the term seems to imply that this coal is little better than the brown, woody lignite of North Dakota, whereas many coals of this rank approach in excellence the lowest grade of bituminous coal. Subbituminous coal is generally distinguishable from lignite by its black color and its apparent freedom from distinctly woody texture and structure, and from bituminous coal by its loss of moisture and the consequent breaking down of"slacking" that it undergoes when subjected to alternate wetting and drying.Lignite.The term "lignite," as used by the Geological Survey, is restricted to those coals which are distinctly brown and either markedly woody or claylike in their appearance. They are intermediate in quality and in development between peat and subbituminous coal.
Anthracite.Anthracite is generally well known and may be defined as a hard coal having a fuel ratio (fixed carbon divided by the volatile matter) of not more than 50 or 60 and not less than 10.
Semianthracite.Semianthracite is also a hard coal, but it is not so hard as true anthracite. It is high in fixed carbon, but not so high as anthracite. It may be defined as a hard coal having a fuel ratio ranging from 6 to 10. The lower limit is uncertain, as it is difficult to say where the line should be drawn to separate "hard" from "soft" coal and at the same time to divide the two ranks according to their fuel ratio.
Semibituminous.The name "semibituminous" is exceedingly unfortunate, as literally it implies that this coal is half the rank of bituminous, whereas it is applied to a kind of coal that is of higher rank than bituminous—really superbituminous. Semibituminous coal may be defined as coal having a fuel ratio ranging from 3 to 7. Its relatively high percentage of fixed carbon makes it nearly smokeless when it is burned properly, and consequently most of these coals go into the market as "smokeless coals."
Bituminous.The term "bituminous," as generally understood, is applied to a group of coals having a maximum fuel ratio of about 3, and hence it is a kind of coal in which the volatile matter and the fixed carbon are nearly equal; but this criterion cannot be used without qualification, for the same statement might be made of subbituminous coal and lignite. As noted before, the distinguishing feature which serves to separate bituminous coal from coals of lower rank is the manner in which it is affected by weathering.
Subbituminous.The term "subbituminous" is adopted by the Geological Survey for what has generally been called "black lignite," a term that is objectionable because the coal is not lignitic in the sense of being distinctly woody, and because the use of the term seems to imply that this coal is little better than the brown, woody lignite of North Dakota, whereas many coals of this rank approach in excellence the lowest grade of bituminous coal. Subbituminous coal is generally distinguishable from lignite by its black color and its apparent freedom from distinctly woody texture and structure, and from bituminous coal by its loss of moisture and the consequent breaking down of"slacking" that it undergoes when subjected to alternate wetting and drying.
Lignite.The term "lignite," as used by the Geological Survey, is restricted to those coals which are distinctly brown and either markedly woody or claylike in their appearance. They are intermediate in quality and in development between peat and subbituminous coal.
Figure 5Fig. 5.Diagrams showing the chemical composition and heat efficiency of the several ranks of coal. Upper diagram: Comparative heat value of the samples of coal represented in the lower diagram, computed on the ash-free basis. Lower diagram: Variation in the fixed carbon, volatile matter, and moisture of coals of different ranks, from lignite to anthracite, computed on samples as received, on the ash-free basis. After Campbell.ToList
Fig. 5.Diagrams showing the chemical composition and heat efficiency of the several ranks of coal. Upper diagram: Comparative heat value of the samples of coal represented in the lower diagram, computed on the ash-free basis. Lower diagram: Variation in the fixed carbon, volatile matter, and moisture of coals of different ranks, from lignite to anthracite, computed on samples as received, on the ash-free basis. After Campbell.ToList
Geologic features of coal may be conveniently described in terms of origin or genesis. Coal has essential features in common with asphalt, oil, and gas. They are all composed of carbon, hydrogen, and oxygen, with minor quantities of other materials, combined in various proportions. They are all "organic" products which owe their origin to the decay of the tissues of plants and perhaps animals. They have all been buried with other rocks beneath the surface. The common geologic processes affecting all rocks have in the main determined the evolution of these organic products and the forms in which we now find them. Originating at the surface, they have participated in the constructive or anamorphic changes of the metamorphic cycle, which occur beneath the surface, and under these influences have undergone various stages of condensation, refinement, distillation, and hardening.
All stages in the development of coal have been traced. In brief, the story is this:
Figure 6Fig. 6.Origin and development of coal. After Gilbert.ToListThis exhibit shows the successive chemical stages in the evolution of coal. The striking qualities of the original are lost in the reproduction through the use of designs in the place of realistic coloring, but the effect is retained sufficiently to indicate the nature of the sequence and the directness with which it leads back to an origin in vegetal accumulations. The evolutionary process is seen to take the form of increasing density through the progressive expulsion of volatilizable matters in the course of geologic time. This inference is substantiated beyond reasonable question by the actual presence of organic remains in coal beds.
Fig. 6.Origin and development of coal. After Gilbert.ToList
This exhibit shows the successive chemical stages in the evolution of coal. The striking qualities of the original are lost in the reproduction through the use of designs in the place of realistic coloring, but the effect is retained sufficiently to indicate the nature of the sequence and the directness with which it leads back to an origin in vegetal accumulations. The evolutionary process is seen to take the form of increasing density through the progressive expulsion of volatilizable matters in the course of geologic time. This inference is substantiated beyond reasonable question by the actual presence of organic remains in coal beds.
This exhibit shows the successive chemical stages in the evolution of coal. The striking qualities of the original are lost in the reproduction through the use of designs in the place of realistic coloring, but the effect is retained sufficiently to indicate the nature of the sequence and the directness with which it leads back to an origin in vegetal accumulations. The evolutionary process is seen to take the form of increasing density through the progressive expulsion of volatilizable matters in the course of geologic time. This inference is substantiated beyond reasonable question by the actual presence of organic remains in coal beds.
Grasses, trees, and other plants growing in swamps and bogs decay and form a vegetable mold in the nature ofpeat. A peat bogfrom the top downward consists of (1) living plants, (2) dead plants, and (3) a dense brownish-black mass, of decayed and condensed vegetable material, in which the vegetable structure is more or less indistinct. Peat consists chiefly of fixed carbon and volatile matter, also of sulphur, moisture, and ash. The volatile matter consists mainly of various combinations of hydrogen and carbon, called hydrocarbons; it goes off in gas or smoke when the peat is heated to a red heat. The fixed carbon is the carbon left after the volatile matter has been driven off. The ash represents the more incombustible mineral matter, usually of the nature of clay or slate. The moisture in peat may be as high as 90 per cent.
The essential condition for thick accumulation of peat seems to be abundance of moisture, which favors luxuriant growth and protects the plant remains from complete oxidation or decay. Without moisture the vegetable material would completely oxidize, leaving practically no residue, as it does in dry climates. For the formation of thick peat beds, there seems to be implied some sort of a balance between the slow building up of organic accumulations and the settling of the area to keep it near the elevation of the water table. Present day bog deposits are known in some cases to have a thickness of forty feet. This thickness is not enough to account for some of the great coal seams within the earth; but there seems to be no escape from the conclusion that the same sort of deposits, formed on a larger scale in the past, were the first step in the formation of the coal seams. Flat, swampy coastal plains are believed to furnish the best conditions for thick accumulation of peat. There is good evidence that most of the deposits accumulate essentially in place, without appreciable transportation.
In time these surface accumulations of vegetable material may subside and be buried under clay, sand, or other rock materials. The processes of condensation begun in the peat bog are then carried further. They result in the second stage of coal formation, that ofligniteorbrown coal. This is brown, woody in texture, and has a brown streak. It has a higher percentage of fixed carbon, and less volatile matter and water, than peat.
Continuation of the processes of induration producessubbituminous coal, orblack lignite, which is usually black and sometimes has a fairly bright luster. It is sometimes distinguished from bituminous coal, where weathered or dried, by the manner in which itchecks irregularly or splits parallel to the bedding,—the characteristic feature of bituminous coal being columnar fracture.
The next stage in coal formation isbituminous coal. It has greater density than the lignites or subbituminous coals, is black, more brittle, and breaks with a cubical or conchoidal fracture. It is higher in fixed carbon, lower in volatile matter and water. A variety of bituminous coal, calledcannel coal, is characterized by an unusually high percentage of volatile matter, which causes it to ignite easily. This material has a dull luster and a conchoidal fracture. It is composed almost entirely of the spores and spore cases, which are resinous or waxy products, of such plants as lived in the parent coal swamp.
There are gradations from bituminous coal intoanthracite coal.Semibituminousandsemianthraciteare names used to some extent for these intermediate varieties. The final stage of coal formation is anthracite,—hard, brittle, black, with high luster and conchoidal fracture. It has a higher percentage of fixed carbon and correspondingly less of the volatile constituents, than any of the other coals.
The coals form a completely graded series from peat to the hard anthracite. Comparison of the compositions of the coal materials at different stages shows clearly what has happened. Moisture has diminished, certain volatile hydrocarbons have been eliminated as gases, and oxygen has decreased. On the other hand, the residual fixed carbon, sulphur, and usually ash, have remained in higher percentage. This change in composition is graphically represented in Figure 6.
During this process volume has been progressively reduced and density increased. Five feet of wood or plant may produce about one foot of bituminous coal, or six-tenths of a foot of anthracite.
The exact physical conditions in the earth which determine the progressive changes in coals, above outlined, cannot be fully specified. Time is one of the factors—the longer the time, the greater the opportunity for accomplishing these results. Another factor is undoubtedly pressure, due to the weight of overlying sediments, or to earth movements. In peat condensational changes of this nature are accomplished artificially by the pressure of briquetting machines. Another factor is believed to be the heat developed by earth movements and vulcanism, which presumably facilitates the elimination of volatile materials, and thus acceleratesthe gradational changes above described. This is suggested by the fact that in places where hot volcanic lavas have gone through coal beds they have locally produced coals of anthracitic and coke-like varieties. In general, however, it has not been possible to determine the degree to which heat has been responsible for the changes. Coals which have been developed in different localities, under what seem to be much the same heat conditions, may show quite different degrees of progress toward the anthracite stage. Another factor that has been suggested as possibly contributing to the change, is the degree of permeability of the rocks overlying the coal to the volatile materials which escape from the coal during its refinement. It is argued that in areas of folding or of brittle rock where the cover is cracked, volatile gases have a better chance to escape, and that the change toward anthracite is likely to advance further here than elsewhere.
Bacterial action is an important factor in the earlier stages, in the partial decay of vegetable matter to form peat; accumulation of waste products from this action, however, appears to inhibit further bacterial activity.
Coal deposits have the primary shapes of sedimentary beds. They are ordinarily thin and tabular, and broadly lenticular,—on true scale being like sheets of thin paper. At a maximum they seldom run over 100 feet in thickness, and they average less than 10 feet. Seldom is a workable coal bed entirely alone; there are likely to be several superposed and overlapping seams of coal, separated by sandstones, shales, or other rocks. In Illinois and Indiana there are nine workable coal seams, in Pennsylvania in some places about twenty, and in Wales there are over one hundred, many of which are worked. Some of the seams are of very limited extent; others are remarkably persistent, one seam in Pennsylvania having an average thickness of 6 to 10 feet over about 6,000 square miles of its area. Only 2 per cent of the coal-bearing measures of the eastern United States is actually coal.
Even where not subsequently disturbed by deformation, coal beds are not free from structural irregularity. They are originally deposited in variable thicknesses on irregular surfaces. During their consolidation there is a great reduction of volume, resulting in minor faults and folds. Subsequent deformation by earth forces may develop further faults and folds, with the result that theconvolutions of a coal bed may be very complex. The beds of a coal-bearing series are usually of differing thickness and competency, and as a consequence they do not take the same forms under folding. Shearing between the beds may result in an intricate outline for one bed, while the beds above and below may have much more simple outlines. In short, the following of a coal seam requires at almost every stage the application of principles of structural geology. It is obvious, also, that the identification and location of sedimentary geologic horizons are essential, and hence the application of principles of stratigraphy.
The folios of the United States Geological Survey on coal-bearing areas present highly developed methods of mapping and representing the geologic features of coal beds. On the surface map are indicated the topography, the geologic horizons, and the lines of outcrop of the coal seams. In addition, there are indicated the sub-surface contours of one or more of the coal seams which are selected as datum horizons. The sub-surface structure, even though complex, can be readily read from one of these surface maps. With the addition of suitable cross sections and comparative columnar sections, the story is made complete. In the study of the occurrence of coal seams, the reader cannot do better than familiarize himself with one or more of the Geological Survey folios.
The high-grade coals of the eastern and central United States are found in rocks of Carboniferous age. The very name Carboniferous originated in the fact that the rocks of this geologic period contain productive coal beds in so many parts of the world. The coal measures of Great Britain, of Germany, Belgium, and northern France, of Russia, and the largest coal beds of China are all of Carboniferous age. Deposits of this period include the bulk of the world's anthracite and high-grade bituminous coal. Coal deposits of more recent age are numerous, but in general they have had less time in which to undergo the processes of condensation and refinement, and hence their general grade is lower. In the western United States there are great quantities of subbituminous coal of Cretaceous age, and of Tertiary lignites which have locally been converted by mountain upbuilding into bituminous and semibituminous coals. Jurassic coals are known in many parts of the world outside of North America, and lignites of Tertiary age are widely distributed through Asia and Europe.