CHAPTER III

Fig. 9.Fig. 9.McKINNELL'S VENTILATOR. (Taylor.)

McKINNELL'S VENTILATOR. (Taylor.)

To assist the action of winds over the tops of shafts and chimneys, various cowls have been devised. These cowls are arranged so as to help aspirate the air from the tubes and chimneys, and prevent a down draught.

The same inlets and outlets which are made to utilize winds may also be used for the ventilation effected by the motion of air due to difference in the specific gravity of outside and inside air. Any artificial warming of the air in the room, whether by illuminants or by the various methods of heating rooms, will aid in ventilating it, the chimneys actingas powerful means of removal for the warmer air. Various methods have also been proposed for utilizing the chimney, even when no stoves, etc., are connected with it, by placing a gaslight within the chimney to cause an up draught and consequent aspiration of the air of the room through it.

Fig. 10.Fig. 10.VENTILATING THROUGH CHIMNEY. (Knight.)

VENTILATING THROUGH CHIMNEY. (Knight.)

The question of the number, relative size, and position of the inlets and outlets is a very important one, but we can here give only an epitome of the requirements. The inlet and outlet openings should be about twenty-four inches square per head. Inlet openings should be short, easily cleaned, sufficient in number to insure a proper distribution of air; should be protected from heat, provided with valves so as to regulate the inflow of air, and, if possible, should be placedso as to allow the air passing through them to be warmed before entering the room.[14]Outlet openings should be placed near the ceiling, should be straight and smooth, and, if possible, should be heated so as to make the air therein warmer, thus preventing a down draught, as is frequently the case when the outlets become inlets.

Fig. 11.Fig. 11.COWL VENTILATOR. (Knight.)

COWL VENTILATOR. (Knight.)

Artificial Ventilation.—Artificial ventilation is accomplished either by aspirating the air from the building, known as the vacuum or extraction method, or byforcing into the building air from without; this is known as the plenum or propulsion method.

The extraction of the air in a building is done by means of heat, by warming the air in chimneys or special tubes, or by mechanical means with screws or fans run by steam or electricity; these screws or fans revolve and aspirate the air of the rooms, and thus cause pure air to enter.

Fig. 12.Fig. 12.AN AIR PROPELLER.

AN AIR PROPELLER.

The propelling method of ventilation is carried outby mechanical means only, air being forced in from the outside by fans, screws, bellows, etc.

Artificial ventilation is applicable only where a large volume of air is needed, and for large spaces, such as theaters, churches, lecture rooms, etc. For the ordinary building the expense for mechanical contrivances is too high.

On the whole, ventilation without complex and cumbersome mechanisms is to be preferred.[15]

FOOTNOTES:[13]In cerebro-spinal meningitis, tuberculosis, and pneumonia, fresh air is curative. Any person, sick or well, cannot have too much fresh air. The windows of sleeping rooms should always be kept open at night.—Editor.[14]These outlets may be placed close to a chimney or heating pipes. Warm air rises and thus will be forced out, allowing cool fresh air to enter at the inlets.—Editor.[15]The ordinary dwelling house needs no artificial methods of ventilation. The opening and closing of windows will supply all necessary regulation in this regard. The temperature of living rooms should be kept, in general, at 70° F. Almost all rooms for the sick are unfortunately overheated. Cool, fresh air is one of the most potent means of curing disease. Overheated rooms are a menace to health.—Editor.

[13]In cerebro-spinal meningitis, tuberculosis, and pneumonia, fresh air is curative. Any person, sick or well, cannot have too much fresh air. The windows of sleeping rooms should always be kept open at night.—Editor.

[13]In cerebro-spinal meningitis, tuberculosis, and pneumonia, fresh air is curative. Any person, sick or well, cannot have too much fresh air. The windows of sleeping rooms should always be kept open at night.—Editor.

[14]These outlets may be placed close to a chimney or heating pipes. Warm air rises and thus will be forced out, allowing cool fresh air to enter at the inlets.—Editor.

[14]These outlets may be placed close to a chimney or heating pipes. Warm air rises and thus will be forced out, allowing cool fresh air to enter at the inlets.—Editor.

[15]The ordinary dwelling house needs no artificial methods of ventilation. The opening and closing of windows will supply all necessary regulation in this regard. The temperature of living rooms should be kept, in general, at 70° F. Almost all rooms for the sick are unfortunately overheated. Cool, fresh air is one of the most potent means of curing disease. Overheated rooms are a menace to health.—Editor.

[15]The ordinary dwelling house needs no artificial methods of ventilation. The opening and closing of windows will supply all necessary regulation in this regard. The temperature of living rooms should be kept, in general, at 70° F. Almost all rooms for the sick are unfortunately overheated. Cool, fresh air is one of the most potent means of curing disease. Overheated rooms are a menace to health.—Editor.

Warming

Ventilation and Heating.—The subject of the heating of our rooms and houses is very closely allied to that of ventilation, not only because both are a special necessity at the same time of the year, but also because we cannot heat a room without at the same time having to ventilate it by providing an egress for the products of combustion and introducing fresh air to replace the vitiated.

Need of Heating.—In a large part of the country, and during the greater period of the year, some mode of artificial heating of rooms is absolutely necessary for our comfort and health. The temperature of the body is 98° to 99° F., and there is a constant radiation of heat due to the cooling of the body surface. If the external temperature is very much below that of the body, and if the low temperature is prolonged, the radiation of heat from the body is too rapid, and colds, pneumonia, etc., result. The temperature essential for the individual varies according to age, constitution, health, environment, occupation, etc. A child, a sick person, or one at rest requires a relatively higher temperature than a healthy adult at work. The mean temperature of a room most conducive to the health of the average person is from 65° to 75° F.

The Three Methods of Heating.—The heating of a room can be accomplished eitherdirectlyby the rays of the sun or processes of combustion. We thus receiveradiantheat, exemplified by that of open fires and grates.

Or, the heating of places can be accomplished by the heat of combustion being conducted through certain materials, like brick walls, tile, stone, and also iron; this isconductiveheat, as afforded by stoves, etc.

Or, the heat isconveyedby means of air, water, or steam from one place to another, as in the hot-water, hot-air, and steam systems of heating; this we callconvectedheat.

There is no strict line of demarcation differentiating the three methods of heating, as it is possible that a radiant heat may at the same time be conductive as well as convective—as is the case in the Galton fireplace, etc.

Materials of Combustion.—The materials of combustion are air, wood, coal, oil, and gas. Air is indispensable, for, without oxygen, there can be no combustion. Wood is used in many places, but is too bulky and expensive. Oil is rarely used as a material of combustion, its principal use being for illumination. Coal is the best and cheapest material for combustion.The chief objection against its use is the production of smoke, soot, and of various gases, as CO, CO2, etc. Gas is a very good, in fact, the best material for heating, especially if, when used, it is connected with chimneys; otherwise, it is objectionable, as it burns up too much air, vitiates the atmosphere, and the products of combustion are deleterious; it is also quite expensive. The ideal means of heating is electricity.

Chimneys.—All materials used for combustion yield products more or less injurious to health. Every system of artificially heating houses must therefore have not only means of introducing fresh air to aid in the burning up of the materials, but also an outlet for the vitiated, warmed air, partly charged with the products of combustion. These outlets are provided by chimneys. Chimneys are hollow tubes or shafts built of brick and lined with earthen pipes or other material inside. These tubes begin at the lowest fireplace or connection, and are carried up several feet above the roof. The thickness of a chimney is from four to nine inches; the shape square, rectangular, or, preferably, circular. The diameter of the chimney depends upon the size of the house, the number of fire connections, etc. It should be neither too small nor too large. Square chimneys should be twelve to sixteen inches square; circular ones from six to eight inches in diameter for each fire connection. The chimney consists of ashaft, or vertical tube, andcowlsplaced over chimneys on the roof to prevent downdraughts and the falling in of foreign bodies. That part of the chimney opening into the fireplace is called thethroat.

Smoky Chimneys.—A very frequent cause of complaint in a great many houses is the so-called "smoky chimney"; this is the case when smoke and coal gas escape from the chimney and enter the living rooms. The principal causes of this nuisance are:

(1) A too wide or too narrow diameter of the shafts. A shaft which is too narrow does not let all the smoke escape; one which is too wide lets the smoke go up only in a part of its diameter, and when the smoke meets a countercurrent of cold air it is liable to be forced back into the rooms.

(2) The throat of the chimney may be too wide, and will hold cold air, preventing the warming of the air in the chimneys and the consequent up draught.

(3) The cowls may be too low or too tight, preventing the escape of the smoke.

(4) The brickwork of the chimney may be loose, badly constructed, or broken into by nails, etc., thus allowing smoke to escape therefrom.

(5) The supply of air may be deficient, as when all doors and windows are tightly closed.

(6) The chimney may be obstructed by soot or some foreign material.

(7) The wind above the house may be so strong that its pressure will cause the smoke from the chimney to be forced back.

(8) If two chimneys rise together from the same house, and one is shorter than the other, the draught of the longer chimney may cause an inversion of the current of air in the lower chimney.

(9) Wet fuel when used will cause smoke by its incomplete combustion.

(10) A chimney without a fire may suck down the smoke from a neighboring chimney; or, if two fireplaces in different rooms are connected with the same chimney, the smoke from one room may be drawn into the other.

Methods of Heating.Open Fireplaces and Grates.—Open fireplaces and fires in grates connected with chimneys, and using coal, wood, or gas, are very comfortable; nevertheless there are weighty objections to them. Firstly, but a very small part of the heat of the material burning is utilized, only about twelve per cent being radiated into the room, the rest going up the chimney. Secondly, the heat of grates and fireplaces is only local, being near the fires and warming only that part of the person exposed to it, leaving the other parts of the room and person cold. Thirdly, the burning of open fires necessitates a great supply of air, and causes powerful draughts.

The open fireplace can, however, be greatly improved by surrounding its back and sides by an air space, in which air can be warmed and conveyed into the upper part of the room; and if a special air inlet is provided for supplying the fire with fresh air to bewarmed, we get a very valuable means of heating. These principles are embodied in the Franklin and Galton grates. A great many other grates have been suggested, and put on the market, but the principal objection to them is their complexity and expense, making their use a luxury not attainable by the masses.

Fig. 13.Fig. 13.A GALTON GRATE. (Tracy.)

A GALTON GRATE. (Tracy.)

Stoves.—Stoves are closed receptacles in which fuel is burned, and the heat produced is radiated toward the persons, etc., near them, and also conducted,through the iron or other materials of which the stoves are made, to surrounding objects. In stoves seventy-five per cent of the fuel burned is utilized. They are made of brick, tile, and cast or wrought iron.

Brick stoves, and stoves made of tile, are extensively used in some European countries, as Russia, Germany, Sweden, etc.; they are made of slow-conducting material, and give a very equable, efficient, and cheap heat, although their ventilating power is very small.

Iron is used very extensively because it is a very good conductor of heat, and can be made into very convenient forms. Iron stoves, however, often become superheated, dry up, and sometimes burn the air around them, and produce certain deleterious gases during combustion. When the fire is confined in a clay fire box, and the stove is not overheated, a good supply of fresh air being provided and a vessel of water placed on the stove to reduce the dryness of the air, iron stoves are quite efficient.

Hot-air Warming.—In small houses the warming of the various rooms and halls can be accomplished by placing the stove or furnace in the cellar, heating a large quantity of air and conveying it through proper tubes to the rooms and places to be warmed. The points to be observed in a proper and efficient hot-air heating system are the following:

(1) The furnace must be of a proper size in proportion to the area of space to be warmed. (2) Thejoints and parts of the furnace must be gas-tight. (3) The furnace should be placed on the cold side of the house, and provision made to prevent cellar air from being drawn up into the cold-air box of the furnace. (4) The air for the supply of the furnace must begotten from outside, and the source must be pure, above the ground level, and free from contamination of any kind.[16](5) The cold-air box and ducts must be clean, protected against the entrance of vermin, etc., and easily cleaned. (6) The air should not be overheated. (7) The hot-air flues or tubes must be short, direct, circular, and covered with asbestos or some other non-conducting material.

Fig. 14.Fig. 14.A HOT-AIR FURNACE.

A HOT-AIR FURNACE.

The cold air from outside comes to the COLD-AIR INTAKE through the cold-air duct, enters the furnace from beneath, and is heated by passing around the FIRE POT and the annular combustion chamber above. It then goes through pipes to the various registers throughout the house. The coal is burnt in the fire pot, the gases are consumed in the combustion chamber above, while the heat eventually passes into the SMOKE FLUE. The WATER PAN supplies moisture to the air.

The cold air from outside comes to the COLD-AIR INTAKE through the cold-air duct, enters the furnace from beneath, and is heated by passing around the FIRE POT and the annular combustion chamber above. It then goes through pipes to the various registers throughout the house. The coal is burnt in the fire pot, the gases are consumed in the combustion chamber above, while the heat eventually passes into the SMOKE FLUE. The WATER PAN supplies moisture to the air.

Hot-water System.—The principles of hot-water heating are very simple. Given a circuit of pipes filled with water, on heating the lower part of the circuit the water, becoming warmer, will rise, circulate, and heat the pipes in which it is contained, thus warming the air in contact with the pipes. The lower part of the circuit of pipe begins in the furnace or heater, and the other parts of the circuit are conducted through the various rooms and halls throughout the house to the uppermost story. The pipes need not be straight all through; hence, to secure a larger area for heating, they are convoluted within the furnace, and also in the rooms, where the convoluted pipes are calledradiators. The water may be warmed by the low- or high-pressure system; in the latter, pipes of small diameter may be employed; while in the former, pipes of a large diameter will be required. The character, etc., of the boilers, furnace, pipes, etc., cannot be gone into here.

Steam-heating System.—The principle of steam heating does not differ from that of the hot-water system. Here the pressure is greater and steam is employed instead of water. The steam gives a greater degree of heat, but the pipes must be stronger and able to withstand the pressure. There are also combinations of steam and hot-water heating. For large houses either steam or hot-water heating is the best means of warming, and, if properly constructed and cared for, quite healthy.[17]

FOOTNOTES:[16]Great care should be taken that the air box is not placed in contaminated soil or where it may become filled with stagnant or polluted water.—Editor.[17]SeeChapter XIfor practical notes on cost of installation of these three conveyed systems—hot-air, hot-water, and steam.—Editor.

[16]Great care should be taken that the air box is not placed in contaminated soil or where it may become filled with stagnant or polluted water.—Editor.

[16]Great care should be taken that the air box is not placed in contaminated soil or where it may become filled with stagnant or polluted water.—Editor.

[17]SeeChapter XIfor practical notes on cost of installation of these three conveyed systems—hot-air, hot-water, and steam.—Editor.

[17]SeeChapter XIfor practical notes on cost of installation of these three conveyed systems—hot-air, hot-water, and steam.—Editor.

Disposal of Sewage

Waste Products.—There is a large amount of waste products in human and social economy. The products of combustion, such as ashes, cinders, etc.; the products of street sweepings and waste from houses, as dust, rubbish, paper, etc.; the waste from various trades; the waste from kitchens, e. g., scraps of food, etc.; the waste water from the cleansing processes of individuals, domestic animals, clothing, etc.; and, finally, the excreta—urine and fæces—of man and animals; all these are waste products that cannot be left undisposed of, more especially in cities, and wherever a large number of people congregate. All waste products are classified into three distinct groups: (1) refuse, (2) garbage, and (3) sewage.

The amount ofrefuseandgarbagein cities is quite considerable; in Manhattan, alone, the dry refuse amounts to 1,000,000 tons a year, and that of garbage to 175,000 tons per year. A large percentage of the dry refuse and garbage is valuable from a commercial standpoint, and could be utilized, with proper facilities for collection and separation. The disposal of refuse and garbage has not as yet been satisfactorily dealt with. The modes of waste disposal in the United States are: (1) dumping into the sea; (2) filling in made land, or plowing into lands; (3) cremation and (4) reduction by various processes, and the products utilized.

Sewage.—By sewage we mean the waste and effete human matter and excreta—the urine and fæces of human beings and the urine of domestic animals (the fæces of horses, etc., has great commercial value, and is usually collected separately and disposed of for fertilizing purposes).

The amount of excreta per person has been estimated (Frankland) as 3 ounces of solid and 40 ounces of fluid per day, or about 30 tons of solid and 100,000 gallons of fluid for each 1,000 persons per year.

In sparsely populated districts the removal and ultimate disposal of sewage presents no difficulties; it is returned to the soil, which, as we know, is capable of purifying, disintegrating, and assimilating quite a large amount of organic matter. But when the number of inhabitants to the square mile increases, and the population becomes as dense as it is in some towns and cities, the disposal of the human waste products becomes a question of vast importance, and the proper, as well as the immediate and final, disposal of sewage becomes a serious sanitary problem.

It is evident that sewage must be removed in athorough manner, otherwise it would endanger the lives and health of the people.

The dangers of sewage to health are:

(1) From its offensive odors, which, while not always directly dangerous to health, often produce headaches, nausea, etc.

(2) The organic matter contained in sewage decomposes and eliminates gases and other products of decomposition.

(3) Sewage may contain a large number of pathogenic bacteria (typhoid, dysentery, cholera, etc.).

(4) Contamination of the soil, ground water, and air by percolation of sewage.

The problem of sewage disposal is twofold: (1) immediate, viz., the need of not allowing sewage to remain too long on the premises, and its immediate removal beyond the limits of the city; and (2) the final disposition of the sewage, after its removal from the cities, etc.

Modes of Ultimate Disposal of Sewage.—The chief constituents of sewage are organic matter, mineral salts, nitrogenous substances, potash, and phosphoric acid. Fresh-mixed excrementitious matter has an acid reaction, but within twelve to twenty hours it becomes alkaline, because of the free ammonia formed in it. Sewage rapidly decomposes, evolving organic and fetid matters, ammonium sulphide, sulphureted and carbureted hydrogen, etc., besides teeming withanimal and bacterial life. A great many of the substances contained in sewage are valuable as fertilizers of soil.

The systems of final disposal of sewage are as follows:

Discharge into Waters.—The easiest way to dispose of sewage is to let it flow into the sea or other running water course. The objections to sewage discharging into the rivers and lakes near cities, and especially such lakes and rivers as supply water to the municipalities, are obvious. But as water can purify a great amount of sewage, this method is still in vogue in certain places, although it is to be hoped that it will in the near future be superseded by more proper methods. The objection against discharging into seas is the operation of the tides, which cause a backflow and overflow of sewage from the pipes. This backflow is remedied by the following methods: (1) providing tidal flap valves, permitting the outflow of sewage, but preventing the inflow of sea water; (2) discharging the sewage intermittently, only during low tide; and (3) providing a constant outflow by means of steam-power pressure.

Cremation.—Another method of getting rid of the sewage without attempting to utilize it is by cremation. The liquid portion of the sewage is allowed to drain and discharge into water courses, and the more or less solid residues are collected and cremated in suitable crematories.

Precipitation.—This method consists in separating the solid matters from the sewage by precipitation by physical or chemical processes, the liquid being allowed to drain into rivers and other waters, and the precipitated solids utilized for certain purposes. The precipitation is done either by straining the sewage, collecting it into tanks, and letting it subside, when the liquid is drawn off and the solids remain at the bottom of the tanks, a rather unsatisfactory method; or, by chemical processes, precipitating the sewage by chemical means, and utilizing the products of such precipitation. The chemical agents by which precipitation is accomplished are many and various; among them are lime, alum, iron perchloride, phosphates, etc.

Intermittent Filtration.—Sewage may be purified mechanically and chemically by method of intermittent filtration by passing it through filter beds of gravel, sand, coke, cinders, or any such materials. Intermittent filtration has passed beyond the experimental stage and has been adopted already by a number of cities where such a method of sewage disposal seems to answer all purposes.

Land Irrigation.—In this method the organic and other useful portions of sewage are utilized for irrigating land, to improve garden and other vegetable growths by feeding the plants with the organic products of animal excretion. Flat land, with a gentle slope, is best suited for irrigation. The quantity of sewage disposed of will depend on the character of the soil, its porosity, the time of the year, temperature, intermittency of irrigation, etc. As a rule, one acre of land is sufficient to dispose of the sewage of 100 to 150 people.

Bacterial Methods.—The other biological methods, or the so-called "bacterial" sewage treatment, are but modifications of the filtration and irrigation methods of sewage disposal. Properly speaking the bacterial purification of sewage is the scientific application of the knowledge gained by the study of bacterial life and its action upon sewage.

In intermittent filtration the sewage is passed through filter beds of sands, etc., upon which filter beds the whole burden of the purification of the sewage rests. In the bacterial methods the work of purification is divided between the septic tanks where the sewage is first let into and where it undergoes the action of the anaërobic bacteria, and from these septic tanks the sewage is run to the contact beds of coke and cinders to further undergo the action of the aërobic bacteria, after the action of which the nitrified sewage is in a proper form to be utilized forfertilization of land, etc. The septic tanks are but a modification of the common cesspool, and are constructed of masonry, brick, and concrete.

There are a number of special applications of the bacterial methods of sewage treatment, into which we cannot go here.

Sewage Disposal in the United States.—According to its location, position, etc., each city in the United States has its own method of final disposition of sewage. Either one or the other, or a combination of two of the above methods, is used.

The following cities discharge their sewage into the sea: Portland, Salem, Lynn, Gloucester, Boston, Providence, New York, Baltimore, Charleston, and Savannah.

The following cities discharge their sewage into rivers and lakes: Philadelphia, Cincinnati, St. Louis, Albany, Minneapolis, St. Paul, Washington, Buffalo, Detroit, Richmond, Chicago, Milwaukee, and Cleveland.

"Worcester uses chemical precipitation. In Atlanta a part of the soil is cremated, but the rest is deposited in pits 8 × 10 feet, and 5 feet deep. It is then thoroughly mixed with dry ashes from the crematory, and afterwards covered with either grain or grass. In Salt Lake City and in Woonsocket it is disposed of in the same way. In Indianapolis it is composted with marl and sawdust, and after some months used as a fertilizer. A portion of the sewage is cremated in Atlanta, Camden, Dayton, Evansville, Findlay, Ohio; Jacksonville, McKeesport, Pa.; Muncie, and New Brighton. In Atlanta, in 1898, there were cremated 2,362 loads of sewage. In Dayton, during 30 days, there were cremated 1,900 barrels of 300 pounds each." (Chapin, Mun. San. in U. S.)

The Immediate Disposal of Sewage.—The final disposition of sewage is only one part of the problem of sewage disposal; the other part is how to remove it from the house into the street, and from the street into the places from which it is finally disposed.

The immediate disposal of sewage is accomplished by two methods—the so-calleddry, and thewater-carriagemethods. By thedry methodwe mean the removal of sewage without the aid of water, simply collecting the dry and liquid portions of excreta, storing it for some time, and then removing it for final disposal. By thewater-carriage methodis understood the system by which sewage, solid and liquid, is flushed out by means of water, through pipes or conduits called sewers, from the houses through the streets to the final destination.

The Dry Methods.—The dry or conservacy method of sewage disposal is a primitive method used by all ancient peoples, in China at the present time, and in all villages and sparsely populated districts; it has for its basic principle the return to mother earth of all excreta, to be used and worked over in its naturallaboratory. The excreta are simply left in the ground to undergo in the soil the various organic changes, the difference in methods being only as regards the vessels of collection and storage.

The methods are:

The Privy Vaultis the general mode of sewage disposal in villages, some towns, and even in some large cities, wherever sewers are not provided. In its primitive and unfortunately common form, the privy vault is nothing but a hole dug in the ground near or at some distance from the house; the hole is but a few feet deep, with a plank or rough seat over it, and an improvised shed over all. The privy is filled with the excreta; the liquids drain into the adjacent ground, which becomes saturated, and contaminates the nearest wells and water courses. The solid portion is left to accumulate until the hole is filled or the stench becomes unbearable, when the hole is either covered up and forgotten, or the excreta are removed and the hole used over again. This is the common privy as we so often find it near the cottages and mansions of our rural populace, and even in towns. A better and improved form of privy is that built in the ground, and made water-tight by being constructed of bricks set in cement, the privy being placed at a distance from the house, the shedover it ventilated, and the contents of the privy removed regularly and at stated intervals, before they become a nuisance. At its best, however, the privy vault is an abomination, as it can scarcely be so well constructed as not to contaminate the surrounding soil, or so often cleaned as to prevent decomposition and the escape of poisonous gases.

The Pail Systemis an economic, simple, and, on the whole, very efficient method of removing fresh excreta. The excreta are passed directly into stone or metal water- and gas-tight pails, which, after filling, are hermetically covered and removed to the places for final disposal. This system is in use in Rochedale, Manchester, Glasgow, and other places in England.

The pails may also be filled with dried earth, ashes, etc., which are mixed with the excreta and convert it into a substance fit for fertilization.

The Pneumatic Systemis a rather complicated mechanical method invented by Captain Lieurneur, and is used extensively in some places. In this system the excreta are passed to certain pipes and receptacles, and from there aspirated by means of air exhausts.

The Water-carriage System.—We now come to the modern mode of using water to carry and flush all sewage material. This method is being adopted throughout the civilized world. For it is claimed a reduction of the mortality rate issues wherever it isintroduced. The water-carriage system presupposes the construction and existence of pipes from the house to and through the street to the place of final disposition. The pipes running from the house to the streets are called house sewers; and when in the streets, are called street sewers.

The Separate and Combined Systems.—Whenever the water-carriage system is used, it is either intended to carry only sewage proper, viz., solid and liquid excreta flushed by water, or fain water and other waste water from the household in addition. The water-carriage system is accordingly divided into two systems:the combined, by which all sewage and all waste and rain water are carried through the sewers, and theseparatesystem, in which two groups of pipes are used—the sewers proper to carry sewage only, and the other pipes to dispose of rain water and other uncontaminated waste water. Each system has its advocates, its advantages and disadvantages. The advantages claimed for the separate system are as follows:

(1) Sewers may be of small diameter, not more than six inches.

(2) Constant, efficient flow and flushing of sewage.

(3) The sewage gained is richer in fertilizing matter.

(4) The sewers never overflow, as is frequently the case in the combined system.

(5) The sewers being small, no decomposition takes place therein.

(6) Sewers of small diameter need no special means of ventilation, or main traps on house drains, and can be ventilated through the house pipes.

On the other hand, the disadvantages of the separate system are:

(1) The need of two systems of sewers, for sewage and for rain water, and the expense attached thereto.

(2) The sewers used for sewage proper require some system for periodically flushing them, which, in the combined system, is done by the occasional rains.

(3) Small sewers cannot be as well cleaned or gotten at as larger ones.

The separate system has been used in Memphis and in Keene, N. H., for a number of years with complete satisfaction. Most cities, however, use the combined system.

Sewers

Definitions.—A sewer is a conduit or pipe intended for the passage of sewage, waste, and rain water.

AHouse Seweris the branch sewer extending from a point two feet outside of the outer wall of the building to its connection with the street sewer, etc.

Materials.—The materials from which sewers are manufactured is earthenware "vitrified pipes."

Iron is used only for pipes of small diameter; and as most of the sewers are of greater diameter than six inches, they are made of other material than iron.

Cement and brick sewers are frequently used, and, when properly constructed, are efficient, although the inner surface of such pipes is rough, which causes adherence of sewage matter.

The most common material of which sewers are manufactured is earthenware, "vitrified pipes."

"Vitrified pipes are manufactured from some kind of clay, and are salt-glazed inside. Good vitrified pipe must be circular and true in section, of a uniform thickness, perfectly straight, and free from cracks or other defects; they must be hard, tough,not porous, and have a highly smooth surface. The thicknesses of vitrified pipes are as follows:

The pipes are made in two- and three-foot lengths, with spigot, and socket ends." (Gerhardt.)

Sewer pipes are laid in trenches at least three feet deep, to insure against the action of frosts.

Construction.—The level of the trenches in which sewers are laid should be accurate, and a hard bed must be secured, or prepared, for the pipes to lie on. If the ground is sandy and soft, a solid bed of concrete should be laid, and the places where the joints are should be hollowed out, and the latter embedded in cement.

Joints.—The joints of the various lengths must be gas-tight, and are made as follows: into the hub (the enlargement on one end of the pipe) the spigot end of the next length is inserted, and in the space left between the two a small piece, or gasket, of oakum is rammed in; the remaining space is filled in with a mixture of the best Portland cement and clean, sharp sand. The office of the oakum is to prevent the cement from getting on the inside of the pipe. The joint is then wiped around with additional cement.

Fall.—In order that there should be a steady and certain flow of the contents of the sewer, the size and fall of the latter must be suitable; that is, the pipes must be laid with a steady, gradual inclination or fall toward the exit. This fall must be even, without sudden changes, and not too great or too small.

Fig. 15.Fig. 15.A BRICK SEWER.

A BRICK SEWER.

The following has been determined to be about the right fall for the sizes stated:

Flow.—The velocity of the flow in sewers depends on the volume of their contents, the size of the pipes, and the fall. The velocity should not be less than 120 feet in a minute, or the sewer will not be self-cleansing.

Size.—In order for the sewer to be self-cleansing, its size must be proportional to the work to be accomplished, so that it may be fully and thoroughly flushed and not permit stagnation and consequent decomposition of its contents. If the sewer be too small, it will not be adequate for its purpose, and will overflow, back up, etc.; if too large, the velocity of the flow will be too low, and stagnation will result. In the separate system, where there is a separate provision for rain water, the size of the sewer ought not to exceed six inches in diameter. In the combined system, however, when arrangements must be made for the disposal of large volumes of storm water, the size of the sewer must be larger, thus making it less self-cleansing.

Connections.—The connections of the branch sewers and the house sewers with the main sewer must be carefully made, so that there shall be no impediment to the flow of the contents, either of the branches or of the main pipe. The connections mustbe made gas-tight; not at right angles or by T branches, but by bends, curves, and Y branches, in the direction of the current of the main pipe, and not opposite other branch pipes; and the junction of the branch pipes and the main pipe must not be made at the crown or at the bottom of the sewer, but just within the water line.

Tide Valves.—Where sewers discharge their contents into the sea, the tide may exert pressure upon the contents of the sewer and cause "backing up," blocking up the sewer, bursting open trap covers, and overflowing into streets and houses. To prevent this, there are constructed at the mouth of the street sewers, at the outlets to the sea, proper valves or tide flaps, so constructed as to permit the contents of the sewers to flow out, yet prevent sea water from backing up by immediately closing upon the slightest pressure from outside.

House Sewers.—Where the ground is "made," or filled in, the house sewer must be made of cast iron, with the joints properly calked with lead. Where the soil consists of a natural bed of loam, sand, or rock, the house sewer may be of hard, salt-glazed, and cylindrical earthenware pipe, laid in a smooth bottom, free from projections of rock, and with the soil well rammed to prevent any settling of the pipe. Each section must be wetted before applying the cement, and the space between each hub and the small end of the next section must be completely and uniformlyfilled with the best hydraulic cement. Care must be taken to prevent any cement being forced into the pipe to form an obstruction. No tempered-up cement should be used. A straight edge must be used inside the pipe, and the different sections must be laid in perfect line on the bottom and sides.

Connections of the house sewer (when of iron) with the house main pipe must be made by lead-calked joints; the connection of the iron house pipe with the earthenware house sewer must be made with cement, and should be gas-tight.

Sewer Air and Gas.—Sewer gas is not a gas at all. What is commonly understood by the term is the air of sewers, the ordinary atmospheric air, but charged and contaminated with the various products of organic decomposition taking place in sewers. Sewer air is a mixture of gases, the principal gases being carbonic acid; marsh gas; compounds of hydrogen and carbon; carbonate and sulphides of ammonium; ammonia; sulphureted hydrogen; carbonic oxide, volatile fetid matter; organic putrefactive matter, and may also contain some bacteria, saprophytic or pathogenic.

Any and all the above constituents may be contained in sewer air in larger or smaller doses, in minute or toxic doses.

It is evident that an habitual breathing of air in which even minute doses of toxic substances and gases are floating will in time impair the health ofhuman beings, and that large doses of those substances may be directly toxic and dangerous to health. It is certainly an error to ascribe to sewer air death-dealing properties, but it would be a more serious mistake to undervalue the evil influence of bad sewer air upon health.

Ventilation.—To guard against the bad effects of sewer air, it is necessary to dilute, change, and ventilate the air in sewers. This is accomplished by the various openings left in the sewers, the so-called lamp and manholes which ventilate by diluting the sewer air with the street air. In some places, chemical methods of disinfecting the contents of sewers have been undertaken with a view to killing the disease germs and deodorizing the sewage. In the separate system of sewage disposal, where sewer pipes are small and usually self-cleansing, the late Colonel Waring proposed to ventilate the sewers through the house pipes, omitting the usual disconnection of the house sewer from the house pipes. But in the combined system such a procedure would be dangerous, as the sewer air would be apt to enter the house.

Rain storms are the usual means by which a thorough flushing of the street sewers is effected. There are, however, many devices proposed for flushing sewers; e. g., by special flushing tanks, which either automatically or otherwise discharge a large volume of water, thereby flushing the contents of the street sewers.


Back to IndexNext