CHAPTER II.THE CHAINLESS WHEEL.

CHAPTER II.THE CHAINLESS WHEEL.

“Sans Chaine sans Gêne,” literally “without Chains without Care,” or even “Chainless and Careless,” is the happy motto chosen by an English maker of chainless bicycles; some thirty American makers are offering or promising to offer a chainless bicycle of some kind this year, although whether they will all realize the declaration of the motto time alone will show.

There are a number of methods for transmitting power from the crank axle of a bicycle to the driven wheel—possible theoretically, but the number practically available is very small. The possession of the field by the chain is now contested, mainly by the bevel-gear or its equivalent; the chain has the field, but changes are sometimes so rapid that this fact alone will not effectually bar out a really better driving method. The elements of bevel-gear construction will readily be seen from the cuts following. The usual front sprocket has teeth, which mesh into a pinion on a shaft that carries power to the wheel through a pair of pinions at the rear.

In April, 1885, a patent for the application of bevel-gears to the bicycle was taken out. Before 1897 more than one hundred such patents had been issued in the United States and England, in addition to those granted in France and Germany, and there had been much experimental construction, in which the difficulty and expense of gear cutting was great, and the springy frames and inaccurate workmanship almost invariably encountered were additional sources of trouble.

Of the foreign-made chainless bicycles theAcatene, built in France, is the only one that has been brought to anything like perfection. The Acatene is a bevel-gear, and in many features is quite equal to the best American workmanship. In this country a number of bevel-gear cycles have been put forward, and some of them are still in use. The difficulties they have encountered have been mostly due to lack of capital and the practical impossibility of getting accurate gears cut except very slowly and at a very great cost.

In 1892 the League Cycle Company of Hartford, Conn., began making a bevel-gear bicycle, and at the New York Show of 1897 a number of their models were shown as curios. They were chiefly interesting from a historical point of view. An 1892 model shown was a lady’s single-loop drop frame, fitted with one-inch cushion tires. It weighed about 75 pounds and had an eight-inch tread. An 1893 model was a diamond frame, having double tubes from the lower part of the head to the crank-hanger, and having also double diagonal stays. It was fitted with pneumatic tires, had a 7¾ inch tread and weighed 45 pounds. An 1894 model shown was of the same construction, but having a high frame. The tread was reduced to 7 inches and the weight to about 32 pounds.

COLUMBIA CHAINLESS.

COLUMBIA CHAINLESS.

An 1895 model was of the regulation high frame diamond pattern, single-tube style, excepting double diagonal stays from seat pillar to crank-hanger. It had a 5-inch tread and weighed about thirty pounds. The 1896 models were a lady’s frame, double-loop, full nickeled, and a man’s diamond frame, each having 5⅛ inch tread and weighing about twenty-four pounds. All these models carried the large front driving gear on the centre of the crank axle between the bearings, the teeth facing outwardly instead of inwardly, as on the earlier samples. This company failed early in 1896, and there were some spasmodic attempts by Howard & Nichols of Newark, N. J., and the Bayvelgere Cycle Company to introduce bevel-gear bicycles. The Pope Manufacturing Company saw this object lesson, and all the old patents went into the hands of the makers of the Columbia. They began experimenting forthwith, and for two years they have built and tried, and made model after model, more than a dozen distinct variations having been tested, besides gathering the costly equipment to cut bevel-gears and produce them in quantities.

(It will be observed that the following descriptions of chainless cycles are from the respective makers, not necessarily in their own language, in every instance, but substantially so. For these descriptions, and still more for any statements regarding the merits of any and the comparative value of chainless driving. The Commercial Advertiser is not responsible, nor does anything in this article preclude the writers from any criticism or any expression of opinion hereafter. It has seemed fairest and best to allow the several makers to present their own side freely, and this paragraph is a disclaimer upon the part of the compilers, rather than a notice of dissent. The Bayvelgere, the English, the Quadrant, the Hildick, the Monarch and the Bantam, however, are described by our own representatives.)

This is aColumbiaof the very highest grade in every respect; the same wheel, including the well-known Hartford single-tube tires, the same forks and handlebar, the same seat-post and choice of saddle, the same unsurpassed frame of nickel steel, the same pedals and cranks. The difference is entirely confined to the driving mechanism, to three sides of a parallelogram having the rear axle and the crank axle as its ends, and the shaft as one side. On this driving mechanism the very best thought, the very best work, and every resource of the manufacturers have been centred. There was long, costly and careful experimenting before the exact relative proportions of the two members of the front gear could be determined. These proportions, however, are now invariable—one turn of the axle giving 24⁄5turns to the shaft. The relative size of the rear members is varied to produce the required “gear.” Friction in bevel-gears is dependent upon the harmonic mean of the teeth in both wheels, and in this model theory and experiment have joined hands to make the adopted proportion exactly right. Wherever ball bearings could be introduced to advantage they have been placed. The side shaft is supplied with such bearings near each end, the strength and firmness of the nickel steel tubing permitting the utmost precision in placing them and insuring perfect work under any strain. The wonder is that all this excellence has been attained with such complete absence of complicated devices.

MECHANISM AND FRAME OF COLUMBIA CHAINLESS.

MECHANISM AND FRAME OF COLUMBIA CHAINLESS.

The regulation equipment of theColumbiaChainless is: 24 inch frame, of 5 per cent. nickeled steel tube; nine inch steering head; outside joints, 2½ inch crank-hanger drop; 5¼ inch tread; 66 and 72 inch gear; weight 26½ pounds; Hartford tires.

The model made for ladies’ use is the well-known double loop drop frame pattern; 5¼ tread, 6½ round cranks, 66 or 72 gear, and weighs, without brake and rear guard, 26½ pounds.

An illustration of the great simplicity of theColumbia bevel-gearconstruction is the fact that when a League wheel was entirely dismembered as to its driving portion only a skilled mechanic was able to reassemble the parts satisfactorily, and that after hours of the most careful work, while aColumbia Chainlesscan be taken apart and put together by any person of ordinary intelligence in less than twenty minutes. The entire absence of back lash in theColumbia Chainlessis very marked. In response to the slightest motion of the pedals the bicycle begins to move; whether forward or backward this is equally true. The marvel of this construction becomes more and more apparent as tests are varied. Lift a bevel-gear bicycle free from the ground, give one of the pedals a sharp push, and the wheel spins with such ease, rapidity and smoothness that the novice is always surprised. There is no swaying and jump; there is no noise. Even neglect can have no influence on the effectiveness of the bevel-gear wheel, but will simply concern its appearance.

It should be said here that theColumbiapattern is distinctive—as the cuts show—in a very novel method of attaching the rear wheel to the frame and providing for its easy removal and replacement.

In theSpalding Chainlessthe mechanism consists of a series of four bevel-gears used in conjunction with a tubular gear shaft. It is simple in construction and can be readily taken apart and reassembled whenever necessity requires.

SPALDING CHAINLESS.

SPALDING CHAINLESS.

The main driving gear, the largest of the series, is fastened to the centre of the crank axle, the power being transmitted from this by a smaller intermediate gear to the tubular shaft running through the right fork-tube, and this in turn transmits the power to the rear intermediate gear, which directly engages the gear secured to the rear wheel in place of the usual sprocket. The location of the main driving gear being in the centre of the crank axle, brings its position also in the centre of the crank-hanger barrel, and adds greatly to the appearance and symmetry of the machine; it also insures greater strength and divides the strain more equally on the bearings. The intermediate gears are securely locked to each end of the tubular gear shaft by a simple locking device, which makes it possible to remove and replace the gears conveniently and without the necessity of any special tools and appliances. The tubular gear shaft rotates on ball bearings specially constructed and designed to receive the thrust of the driving gear, and transmits the power to the rear hub. The lines of the rear portion of the frame present the same appearance as in bicycles of the ordinary chain type, the only perceptible difference being in the small aluminum cases which cover the gears. In this particular the Spalding Chainless differs from some others, presenting nothing unsightly to detract from the appearance of the machine.

DRIVING GEAR OFSPALDING CHAINLESS.

DRIVING GEAR OFSPALDING CHAINLESS.

The method of fastening the main driving gear to the crank shaft, and the front and rear intermediate gears to the tubular driving shaft, is original. The customary method of attaching these gears is to screw them on; but this method is impracticable, for the reason that the constant strain in hill climbing or in heavy work kept screwing the gears tighter and tighter on the shafts, thus making removal difficult. In theSpalding Chainlessthese gears are constructed with a tongueprojecting from the back side of the gear. The gears fit snugly to their respective shafts, and this tongue is received in a recessed collar which is solid with the shaft, and which prevents any rotation of the gear on its axis. The gears are then securely locked in place by an ordinary lock-nut, which, when set up, makes a positive fastening that cannot work loose under any conditions, and one that can always be readily removed and adjusted.

The gears are cut by special machinery; they are theoretically correct, and are as absolutely perfect as it is possible to make bevel-gears. It is now nearly two years since Spalding & Bros. first undertook the matter of building chainless bicycles, and more than a year since their first complete bicycle was put into actual use upon the road. This same bicycle is in use today, and if anything, is better, after having been ridden over 25,000 miles, than it was originally. Its working parts show no perceptible wear, the frictional parts in the gears being polished more smoothly through use, and running better today than when the machine was first put on the road.

TheSpalding Chainlesshas a 3-inch drop at the crank-hanger. The upper and lower main tubes are 1⅛-inch, the rear forks ⅞-inch, the rear stays are ¾-inch reinforced; wheel base is 44⅜-inch. The front fork has an arched crown; the fork sides are reinforced. The makers continue to use their well-known hub with straight tangent swaged spokes, 28 in the front and 32 in the rear. The cranks are 6¾-inch round spring steel, with a 72-gear.

The Spalding lady’s Chainless contains the same mechanical features found in the man’s model. The frame is the double loop drop, and has evidently been carefully studied. The cranks are 6½ inches of round spring steel and geared to 66½ inches. Some variations in gears are furnished.

E. C. Stearns & Co. have been entirely successful in securing an ideal construction in their bevel-gear cycles. The accompanying illustrations, while giving but hints of the complete machine, indicate that the graceful lines which have always been characteristic of the “Yellow Fellow” have been retained, and that the bevel gears and the shaft in their dust-proof cases are exceedingly neat and attractive.

STEARNS CHAINLESS.

STEARNS CHAINLESS.

The bearings are of an improved type. The balls are so laid between the cones that they roll without sliding or side motion, and are practically frictionless. By turning a cap nut and sliding back the nickeled caps at either end of the shaft case, the bearings are brought into full view, and, with the bevel-gears, may be adjusted with perfect ease. The running gear is absolutely noiseless, and is so exactly assembled that the rear wheel will balance for several minutes under the weight of the rim alone. In as much as there is no lost motion, the maximum of speed is assured for the minimum of power applied.

The gears on theStearns Chainlessare cut by the most modern machinery and by the most expert workmen. They are as correct in pitch and faceas the wheels of an expensive watch, and are made of the best quality of steel obtainable. Unlike other well-known types, both a vertical and lateral adjustment of the gears is possible. So far as wearing qualities go, the bevel gears in theStearns Chainlessare almost as free from friction as are the bearings. The cases that cover the gears are entirely dust proof; the lower fork tube which incloses the shaft is enamelled either orange or black to match the frame.

One of the strongest features of this model is the ease with which the rear wheel can be removed and the driving mechanism taken apart. The crank-hanger gears are of 10 pitch, with 42 teeth, and 10 pitch with 16 teeth; the rear hub gears are 10 pitch, with 21 teeth, the resulting gear ratio being 73½. The connecting shaft is of ⅝ diameter, 16 inches long, and made of 10-gauge special tubing; its bearings are self-oiling. Front and back gears are detachable; the crank-hanger drop is 2½ inches; wheel base is 43½ inches; weight is twenty-six pounds. The tubing in the frame is 1⅜ in the head, 1⅛ in upper and lower main tubes, ¾ in back stays, ⅞ in rear forks. The fork crown is two-piece, flat; the cranks are flat, 7 inches long; options are offered on length of cranks and gear ratio.

TheStearns chainlessfor ladies is similar in general construction to the man’s model, the only variations being in the shape of the frame and a lower gear of 66½ inches. The crank-hanger is dropped 2½ inches below the wheel centres, which makes it a very convenient wheel to mount and dismount from. The absence of the usual chain guard gives it a very neat appearance. It has a straight lower main tube and slightly curved upper tube.

TheMonarch Chainlesshas regulation diamond frame, with flush joints and drop-forged connections. The upper main tube is 1⅛ inches, lower main tube 1¼. The diagonal tube is 1¼ inches, tapered to 1⅛ at seat-post. The rear stays are ¾ inch, tapered to ⅝ at the seat-post. The rear fork on the lefthand side is of round section tubing, 20 gauge, ⅞ diameter. The rear fork on the right side is of 16 gauge, ⅝8 inch in diameter, over which is fitted a ⅞8 tube of 20 gauge, and which carries the gears at each end, and it will be noted that this is a radical change in construction from the other types of chainless cycles on the market. All makes of bevel-gear construction or others, using a shaft to convey the power from its centre of production to the rear driving hub, insert the shaft inside of the rear fork on the right-hand side. In this construction, however, the rear fork is inside of the hollow shaft or tubing which envelops wholly the rear fork, and is carried at both ends by a set of ball bearings. The tread is 5⅜ inches in width. The frame has a 2-inch drop at the crank-hanger. Cranks have 6½-inch throw. Seatpost and handlebar connections are of the internal fastening style, and the wheels have laminated wood rims, rosewood finish, nickeled eyelets in spokeholes. The weight is about twenty-six pounds. The gear is the pin-roller type, as shown in the accompanying illustration.

MONARCH CHAINLESS.

MONARCH CHAINLESS.

The ladies’ model is of the same general construction, excepting that the frame is of the double loop variety with a straight lower tube and a partially curved upper tube. It is exceedingly graceful in lines, and in general appearance as comely a model of the drop frame chainless wheel as any yet offered by American makers.

The gears on the crank axle and hub resemble in a degree the well-knownsprocket wheels, the main difference, however, being the teeth, which are closer together and V-shaped in cross section, instead of four-sided. The driving shaft, which fits over the rear fork of the frame, as before described, is furnished at each end with a pinion having roller-pin teeth, which run in and out of the wide angle pinions between the gear teeth. It is claimed for this construction that, even should the frame become twisted out of line, there would be no binding of the gears. The makers also claim for it high efficiency on account of its direct lifting action as against the end thrust of the bevel-gear. Another argument made in its favor is that it is not of a delicate construction, though light in weight. There is, indeed, good authority for believing that this type of gear, which is a modification ofLloyd’s pin-roller gearas used on the quadrant in England, may become a popular one. Grant, the well-known authority on gears, says: “The pin gear is particularly valuable when the pins are made in the form of rollers, for then the minimum of friction is reached, the friction between the tooth and pin, otherwise a sliding friction at a line bearing is, with a roller-pin, a rolling friction. When properly made there is no form of tooth that is superior to the pin tooth.” The price of this chainless bicycle will be $100. It is furnished complete, with a neat case over the gears.

In the sample shown the transmitting shaft has eight rollers at each end. The wheel hub has thirteen of the V-shaped teeth; the large wheel on the crank shaft has thirty-seven, this wheel being ⅜-inch wide at the base of the teeth and overhanging somewhat on its inner side. The surfaces of the V-teeth are not quite flat, but have a slight twist in order to obtain a more smooth and rolling action. The frame is also peculiar at the driving-wheel. The usual slot is present, through which to remove and replace the wheel, but there is nothing resembling a chain-adjuster. The back stays are lapped and jointed just above the hub; the rear forks are also separable near the axle. The wheel being thus readily removed, the hollow revolving shaft can be slipped off the fork which it encloses. It is obvious that the teeth of these gears have great strength, and the contrivance is certainly ingenious.

The riders of Humber bicycles now have an opportunity of experimenting at comparatively small cost, because the makers of the Humber will convert an 1898 chain Humber into aHumber Chainlessfor $40, an 1897 for $50 and an 1896 for $65, or they will convert an 1898 Humber Chainless into a Humber chain cycle for $18 at any time during the season of 1898, should the buyer not be satisfied with the chainless, which is thought highly improbable, because the cycles they have made for testing purposes run easily and smoothly and have proven strong and durable under severe usage.

HUMBER CHAINLESS.

HUMBER CHAINLESS.

The makers of theHumber Chainlessdo not claim that it runs more easily than the chain Humber, the chain of which is accurately made and the sprockets accurately cut. Nor do they claim that the gears will not wear in time. It is customary in all well regulated factories to write off 10 per cent. each year for wear and tear on machinery, but they are sure that the spur gear chainless runs easily, is simple of construction and adjustment, and is not likely to get out of order. The details of the construction of this model do not differ from the regulation chain model.

The front gear is 10¾ inches in diameter and has 126 teeth. The rear gear is 4½ inches in diameter and has 50 teeth. Between them is an intermediate and connecting gear of 11 inches in diameter, with 127teeth. The resulting gear ratio is 70. As two large gears of 125 teeth each will produce an exact ratio of 70, this uneven combination is intended to lessen the frequency of contact between the same teeth, on the “odd-tooth” rule of mechanics. The intermediate gear is borne in a small fork built from the rear stay to the back fork, the back fork on that side being of D section, though round on the other side. The workmanship is of the highest quality, and the easy movement of this model is very interesting. It is very hard to find a bicycle of any sort to beat this in ease, quiet and smoothness, spinning clean and without load. A gear case is offered at $9 extra; a skeleton case is also offered at $2.

The device is the well-known Carroll spur gear, the same as used by Starbuck, the middle-distance racer, on the track not very long ago. At first sight, it might appear that sand and mud might create a disturbance by edging themselves into these small gears, but the makers maintain that a gear case is unnecessary, because the gears practically clean themselves, in consequence of each gear wheel running in direction opposite to that of its neighbor. In actual use upon muddy roads, through all sorts of weather, and under all conditions, it is claimed that the spur gears not only did not collect mud and dirt, but that they actually cleaned themselves, and while it is possible that a pebble or a piece of metal thrown in among the teeth might cause a breakage, it can only be said that in many hundred miles riding, the tests having been made under extremely unfavorable conditions, during rain, mud, storm and snow, no such difficulty was apparent. The tests developed unusual and unexpected qualities, and all the riders were fully convinced of its thorough practicability.

STERLING CHAINLESSCRANK BRACKET.

STERLING CHAINLESSCRANK BRACKET.

In keeping apace with the times, the Sterling Cycle Works of Chicago has produced a novel chainless bicycle of the bevel gear type. In its construction are incorporated ideas which are departures from the chainless models that have already appeared. In the Sterling model the main driving-gear wheel is located at the centre of the crank axle. The small pinion on the forward end of the driving shaft meshes on the right side of the driving wheel. That necessitates the near pinion to engage the teeth on rear hub, back of the axle instead of in front of it, as in some other forms of chainless wheels. This permits the use of the entire lower right rear tube as a container for the connecting shaft, instead of building a frame work for the support of the gears.

The rear wheel may be taken out by removing the step nut and unscrewing the rear axle. The two rear gears are made interchangeable, giving the rider the advantage of seventy-two or seventy-eight geared wheel, as may be desired, with one set of gears. This will be the standard equipment, but another option will be offered by which the rider can have a combination of sixty-four and eighty-eight, if he prefers.

STERLING CHAINLESSCONNECTING SHAFT.

STERLING CHAINLESSCONNECTING SHAFT.

These special features of theSterling chainless constructionare shown in theaccompanying illustrations. The rear fork on the gear side has a boss in which the axle is screwed. The opposite fork end has a circular opening larger than the cross section of the axle and a short slot for inserting the axle. A threaded sleeve fills the circular opening, which is also threaded, abutting against the outside face of the fork end with a shoulder. A lock-nutfits upon the inner projecting portion of the sleeve. In assembling, the wheel is first mounted on the axle; the latter is then screwed into the fork end on the gear side by applying a wrench on the hexagonal portion of the axle projecting beyond the hub on the opposite side. When the gears mesh properly and the lock-nut has been placed on the left side end of the axle, the threaded sleeve is placed in position and the lock-nut is tightened.

The lines of mesh along the teeth of bevel-gears or radial gears, as they are more properly called, always point to a common centre when the gears are in proper engagement. The common centre in the front row gears of a chainless bicycle is at a point in the axis of the crank shaft; but if the two front pinions were interchanged they would cease to have a common apex, and could not be made to co-operate. With the driving shaft at right angles with the crank shaft and the rear axle, the pinions in front as well as in the rear could be made interchangeable only at a pitch of forty-five degrees, which would make the interchangeability of no value. With the driving shaft at another angle with the rear axle, as in all chainless bicycles, it is possible to so proportion the two rear pinions that the mesh lines point to the same centre whether the smaller pinion is on the hub or on the driving shaft. The possibility is limited to two sets of interchangeable gears for any given angle of the driving shaft, which has been taken advantage of by the Sterling Company.

The Sterling Chainless will be made in two models; one for men and a drop frame design for women. Each lists at $125.

This chainless wheel is constructed on an entirely new and distinct principle by which all bearing points of the transmitting mechanism are incased and made absolutely proof against dust, dirt and weather conditions. The most noticeable part of this construction is the transmission of motive power to the rear hub, equally on both sides of the frame, this action being continuous at all times. It therefore gains over a bevel-gear construction not only the advantage of eliminating the friction always present in a cog gear, but also removes the danger of springing the rear forks out of line by a sudden strain, which has been so difficult in all chainless wheels heretofore produced.

The crank-hanger of this wheel consists of a steel box in which is located the gearing mechanism. Within this box are two double-flanged, notched pulleys, over which runs a link belt especially made and designed for this construction. These pulleys are placed on the central line of the bicycle, the larger or front pulley which corresponds to the driving sprocket on the chain wheel, being secured to the driving crank axle by means of a thread and held in place by a reversed threaded lock-nut. The smaller or rear pulley is made in one piece with a crank axle, having on each end short cranks set quartering.

On each side of the frame, a Pitman or connecting rod extends from the short crank on the auxiliary axle in the crank box to a similar crank attached to each side of the rear hub, a dust-proof ball bearing being provided at each end of the Pitman rod. The rear hub being journaled in ball bearing in the rear fork and fittings, is forced to revolve in unison with the auxiliary axle by the connection formed through the corresponding cranks and connecting rod on each side. A dead centre is prevented by the Pitman crank being set quartering, as explained. An eccentric adjustment is provided at the front bearing of each Pitman rod, making it possible to slightly vary the length of the rod when necessary. This adjustment can be effected as easily as the adjustment of a chain on the ordinary type of wheel. The adjustment of the driving belt is also readily effected by mounting the front or driving crank shaft in an eccentric on the hanger boxing. The tread of the machine is made as narrow as possible by the use of flattened tubing in the rear forks, and by cranking the driving rods, the crank portion being reinforced by a forged connection. The outward appearance of the wheel is attractive, and in quality of material and workmanship, and elegance of finish, it upholds the standard heretofore maintained on all products of the Dayton factory. It is claimed that this construction produced less friction than any bevel-gear chainless wheel, in addition to the other important features noticed.

TheBayvelgere, which was at last year’s show and impressed us as the most decided step in chainless driving up to that time, appears now in a rebuilt and materially improved form. In a general way, it looks externally much like other chainless bicycles of the bevel-gear class, and therefore does not need to be shown by a cut as a whole.

The connecting shaft, as before, is made separate from the two ends which carry the bevel pinions. The shaft proper terminates at each end in four short pins with rounded and slightly enlarged ends; these pins enter corresponding receptacles in the two pieces which carry the pinions, and when in position thus the entire shaft is complete.

BAYVELGERE JOINTED SHAFT.

BAYVELGERE JOINTED SHAFT.

The effect is a sort of ball-and-socket joint; the pins and receptacles together form a semi-universal or toggle joint, technically called a “four-pinion toggle.” So long as the frame is in line, this device remains inert and the working is the same as that of a rigid shaft; but if the frame should become sprung by straining or accident the flexibility comes into action and the power is carried from crank axleto wheel axle without the slightest twisting or binding, whereas any such condition of disturbed alignment will necessarily cause serious binding on any construction with a rigid shaft. In both design and carrying out, this device is thoroughly mechanical and practical. It is shown in the accompanying cut.

When power is applied to the crank axle, it is claimed, there is a tendency to push the small pinion rearward, because the faces of the two bevels at that place are inclined toward each other, and so one presses on the other like two wedges. Other bevel-geared patterns have only a single row of balls at each end of the shaft, and it is claimed by the Bayvelgere people that when the shaft is thus pressed rearward there is nothing to hold it, and the pinion on its end is crowded hard against the pinion on the wheel hub, thus producing extra friction and perhaps a deadlock; such a deadlock of the gears is also liable to occur if the bicycle falls over and the blow drives the gear on the crank axle sharply against the pinion which meshes with it. Conceding this to be so, the precaution against it taken on theBayvelgere, and forming an important point in its patent claim, is certainly practical. This precaution consists in placing a double row of balls at each end of the shaft (i.e., on each of the pinions) and as these rows face in opposite directions any rearward thrust on the shaft is met by one of the rows of balls on the back pinion; moreover, there is a little space at each of the toggle joints above described, and this space must be taken up before any end thrust on the shaft can affect the meshing of the gears.

This construction, together with the manner of fixing the gears in the frame—a method which cannot be shown without too much detail and several cuts—is claimed to greatly facilitate placing the parts together and to make their action easier and their endurance better. To put it in another way, each pair of bevels is claimed to be independent and to be capable of taking care of itself in adjustment and running, while the flexible shaft merely carries power from one to the other without any effect to disturb either.

Mr. L. D. Munger is in charge of the works as designer. The price of the Bayvelgere is $100.

TheHildickis a spur gear, an evolution from the Gentry of last year’s show. It has only one intermediate gear, which is very novel in being a wheel without spokes or hub, so to speak, since it is rim only. The front sprocket becomes a spur gear of 8 inches diameter and 95 teeth; the rear sprocket becomes one of 3 inches diameter and 35 teeth; the two are connected by an intermediate of 13 inches diameter and 156 teeth. This large gear consists of a rather light ring which is held on the right fork by a small clip with screw-bolt and nut at either side; this ring, which of course is stationary, is grooved around its outer edge. The toothed ring, similarly grooved on its inner edge, runs around upon the fixed ring, 1083⁄16balls being placed within to make a ball bearing. As the toothed ring is continuous, no way of getting the balls in appears at first; but a closer inspection shows that on the back side there is a small opening in the fixed ring, covered by a removable plate, through which the balls are introduced. There is no adjustability provided for this ball bearing, but the three gears can be set into exact distances at thepitch line by the usual chain-adjuster at the rear. The gear ratio upon the sample is 76, but variations in ratio can be obtained with this arrangement with less difficulty than with other forms of chainless. Another feature is that the device is easily removable. The front gear can be interchanged with the usual sprocket, since it goes on the regular “spider;” the back gear is almost as readily substituted for the back sprocket; the fixed ring, with its running toothed ring on it, can be put on the fork or removed by handling the simple fastenings. A claim is therefore made that the device is applicable to any bicycle (with the usual distance between axles, of course) so that whoever wants to try chainless driving can do it without being committed thereto.

DRIVING GEAR OF HILDICK CHAINLESS.

DRIVING GEAR OF HILDICK CHAINLESS.

The price of the Hildick chainless bicycle complete is $60, and the intention is also to sell the special parts necessary to convert a chain-driver for $25. The intermediate gear has the advantage of a bearing of extraordinary diameter, which will be a help when wrenching strains come. The construction is certainly clever and ingenious and a vast advance on the former effort of its inventor. How well this device for chainless driving will stand the rack and test of actual use in the bands of all sorts of people time will show, as it will (and as nothing else can) in the case of all devices which are not hopeless from the start. We think the Hildick worth entering for trial with the rest.

DRIVING GEAR OF THECRESCENT CHAINLESS.

DRIVING GEAR OF THECRESCENT CHAINLESS.

TheCrescent chainlessis of the bevel-gear class, having its rear pinion on the forward side of the wheel hub, the shaft passing through the right fork. Its most distinctive visible feature is the broad U which holds the wheel. This broad U or latch-piece has the wheel spindle carried in an open hole or slot in the bridge over it, so that the wheel can be withdrawn and replaced as readily and in the same manner as on the usual chain models; the appearance at this point will at once distinguish the Crescent from all others, at a glance. Another peculiarity is that the rear wheel is readily adjusted laterally on its spindle, so that the fit of the two gears is in easy control. By loosening the two nuts outside the wheel, the rear wheel slips out, and by loosening the nuts on the spindle itself its position is adjustable so as to make a proper fit of the two gears. The wheel can be removed and replaced without disturbing the bearing adjustment, and the hub gear goes on interchangeably with the usual sprocket, so that if the wheel itself should break down a chain wheel could be taken off another bicycle and substituted; the crank axle, bearing nuts, etc., are similarly interchangeable between the chainless and the chain models. The rear hub has twenty-four teeth; the shaft has twenty-three at the rear and fifteen at the front, where it meshes with forty on the crank axle gear. Ball retainers are used throughout, and the gears themselves form cones for the bearings. Felt washers are fitted, except that the bearings in front are protected by the washer directly behind the circular cover plate which is set into the enlarged end of the crank hanger. Several of the wheels have been subjected to severe tests under both ordinary and extraordinary road and weather conditions, and we learn have responded admirably in every instance. The price is $75.

The Crawford chainless is of the bevel type, and has its driving members in the same positions relative to each other as most of the other models, but it is distinctive in having, apparently, the fork drive instead of the central shaft. That is, as is sometimes on the French Acatene and in the models with the Sager pin-roller gear as thus far made, the driving shaft is tubular and takes the place of the usual fork, carrying the pinions on its ends, while the stay is a stout rodparalleling this shaft and within it, running from crank axle to wheel hub and fastening at each end with a nut. The lefthand side has a similar stay rod within the fixed tube, so that the frame is especially stiff. The wheel hub has twenty-four teeth and the shaft has twenty-three at the rear, as usual; but at the front are eighteen, driven by forty-eight. As the Crawford chainless is under license from the Pope Company, some comment has been caused by its announced price of $75, but the explanation is offered that an exception was made in case of this model because it uses only some of the patents held by the Pope Company.

TheDayton chainlesshas been already described, but we are now able to furnish cuts. It is of the locomotive or double-crank construction, substantially as shown two years ago under the name of the Loco or Twentieth Century. A double-flanged notched pulley, with a link belt, equivalent to a centrally notched sprocket and chain, runs within the crank bracket, working centrally and tightly enclosed. This is necessary to obtain speeding up and to preserve motion in the forward direction. Adjustment of tension is by an eccentric on the crank axle. The small pulley is one piece with a pair of short cranks set at right angles or quartering, and these work connecting rods, whose length is slightly variable when necessary by means of an eccentric adjustment at the forward end. Every bearing is a ball bearing, of course. The rear forks are of D tubing, and narrowness of tread is further attained by “cranking” the connecting rods, the portion thus bent being reinforced to avoid weakening. For this type of chainless the following is claimed:

THE DAYTON CHAINLESS.

THE DAYTON CHAINLESS.

“Its most important advantage is derived from the equal transmission of motive power on both sides of the frame from the crank-hanger to the rear hub. This equal division of power transmission is both constant and continuous. Not only is much of the friction of a bevel-gear eliminated, but the danger of springing the rear fork out of line by a sudden strain is completely removed. All bearing points of the transmitting mechanism are encased and made absolutely weather proof.”

Whatever view is held regarding the mechanical advantage or disadvantage of this method of transmitting power for bicycle purposes, there can be no doubt that there is some benefit from the alternation of driving strains from one side to the other, instead of having them only on one side, and also that the complete inclosure of the driving parts is a benefit. But users of this type of bicycle must learn to mount without a step, since none can be fitted, on account of the crank action on the rear wheel.

TheFeatherstone chainless, called the “King,” in order to match with the name borne by the line of bicycles made by this concern, is of the same type as the foregoing in respect of driving, but embodies new and peculiar features, which are in the patent recently issued to Michael McAmeny of Denver. Double driving rods are used with two pairs of short cranks, and the rods are made slightly adjustable in length at theirrear ends as indicated in the cut. It is claimed, however, that when these rods are once properly adjusted, they will need no further attention, “as the driving connection itself adds to the rigidity of the lower frame members of the machine and prevents any variation in the distance from rear wheel hub to the crank shaft and the other shafts in the crank-hanger case.” As the cut shows, this hanger contains three shafts instead of two. The third one is necessary because—since a spur gear is used instead of a “link belt” or chain—a second reversing of the direction of movement is completed in order to avoid the dilemma which one of the witless inventors whose contrivances were described in our article of a week ago accepted without hesitation, namely, that either the bicycle wheel must travel backward or the rider must pedal backward. The pedals being run in the forward direction, the crank shaft is driven forward and the shaft gearing with it runs backward; the third shaft gearing with that, of course, runs forward again, and this carries the pairs of cranks which work the wheel. This introduction of a third shaft within the hanger (which is avoidable only by using a belt or an internal gear) is cleverly utilized to produce the novelty of chainless driving, combined with a changeable gear having two speeds and the old notion of making the pedals footrests at will.


Back to IndexNext