CHAPTER IV.

Fig. 2.Fig. 2.Turkish Baths, Northumberland Avenue, Charing Cross.View larger image

The ladies' baths partly adjoin the gentlemen's, and are partly separated by an area. They are entered from the side street. On the ground floor is the pay-office and cooling room. Additional couches are provided on the first floor, where is also an attendants' room. In the basement are three hot rooms and two shampooing rooms. A washing room, shower bath, and plunge bath adjoin the shampooing rooms. The hottest rooms of both sets of these baths are within a few feet of each other. Each, however, has its separate and distinct furnace. A passage formed by the area allows access to the stokery and furnace chambers.

In Messrs. Nevill's baths at London Bridge the cooling rooms, &c., are in the basement, and the bath rooms proper in a sub-basement.

Bartholomew's baths at Leicester Square are an excellent example of a compactly-arranged double set of baths. The various apartments are designed one above the other on different floors, the area of the building being limited. On the ground floor, as usual, are the pay office and a combined cooling and dressing room, and an attendant's room. In the basement are the bath rooms, arrangeden suite—first a shampooing and washing room, containing, also, in a very compact manner, the plunge and shower baths; nextis the tepidarium; then the smaller second hot room; and, lastly, the smallest hot room of a very high temperature. The heating chamber is placed adjoining this. The principle of its construction is that generally adopted in the baths erected under the late Mr. Bartholomew's direction, viz. a furnace with a coil of thin iron flue-pipes, radiating, in a measure, a certain amount of heat directly into the hot rooms. The bath rooms are divided from one another by glazed wood partitions, as distinct from the solid walls dividing baths like the Hammam and Savoy. A consideration of these two methods of dividing the hot rooms, does not, however, concern us here. A staircase from the entrance vestibule leads to the ladies' baths on the second and third floors, where also are manager's and other private rooms.

Broadly speaking, baths may be divided into two classes, viz. those in which the various apartments are arrangeden suite, and those irregularly planned. Where possible the former arrangement is preferable, as, with the hot rooms in a line, the circulation of air is facilitated. Fig. 11 is a section of a set of hot rooms arrangeden suite; and the baths at Figs. 24 and 25, in Chapter VIII., are planned on this principle.

As I have said above, where a basement and ground floor are available, and a little space can be gained at the back of the existing building, the office, cooling and dressing rooms can be arranged on the ground floor, and the bath rooms proper on the basement level, but with light and air above. If the site be an ordinarynarrow-fronted town house, and the bath an unassuming one, the plan may be arranged after the manner of Mr. Joseph Burton's baths (Fig. 3), in the Euston Road, London. Here a pair of ordinary town dwelling-houses are pressed into the service of the bath. The basement and ground floors are devoted to the baths, the upper floors forming a private hotel. On one side are the gentlemen's, and on the other, the ladies' baths. Entering the former, we find a space on the ground floor, fronting the street, serving as an office. Adjoining this is a range of dressing-boxes, and further on a cooling room, excellently lighted by a large window forming the whole end of the apartment. From this little frigidarium a marble staircase leads to the door of the tepidarium, formed at basement level at the back of the houses. This chamber is lighted by means of a ceiling-light constructed in the form of a small, flat dome, with stained-glass stars set therein. A marble seat runs round the whole of this chamber. On one side of the staircase is placed the calidarium, and, on the other, the combined shampooing room and lavatorium, a door from the latter forming an exit for the visitor who has completed his bath. At one end of the shampooing room is a chamber containing the cold plunge bath and needle bath. A door from hence leads to a staircase conducting to the furnace-chamber. A laundry is provided at the head of these stairs. The furnace-chamber is placed under the further end of the calidarium. The baths for ladies are arranged on a very similar plan. The gentlemen's baths are among the earliest erected in this country, and still form a most compact and convenient institution. They were designed by Mr. James Schofield. The illustration shows the ladies' baths. The ceilings of the hot rooms are not indicated on the section.

Fig. 3.Fig. 3.Turkish Baths, Euston Road, London.View larger image

The whole of the baths mentioned in this chapter are the property of private individuals or companies. The number of baths provided in this country under Act of Parliament or by civic corporations is so small, and their size and design so insignificant, that it would be waste of space to describe them here. They are unworthy of the nation. One of the best is the pretty little bath provided on the first floor of the public bath-house recently erected by the Corporation of Stockport. The fine new baths at Bath erected from designs by Major Davis, the city architect, do not include a Turkish bath. It must be admitted that some slight increase in the amount of attention paid by corporate bodies to bath-building is latterly to be noticed, and a few years may possibly see a great advance in this direction. That this may indeed be so should be our sincere hope, since the lack of fine public baths is a standing disgrace to a nation that prides itself upon its cleanliness.

In Germany, considerable attention has been bestowed upon the design of the Turkish bath, many excellent baths having been built in the more complete bath-houses of the Empire. Well-arranged Turkish baths are to be found in the baths at Nuremberg, Hanover, and Bremen, the latter planned with both a first and second class frigidarium to the one set of bath rooms. The plan, however, has nothing to recommend it, and in thiscountry would be useless. The Nuremberg bath is handsomely planned, and has a spacious frigidarium. It is placed in a building comprising ladies' and gentlemen's swimming baths, shallow baths, and a Russian bath. In many of the hydropathic establishments (Kurbäder) of Germany, will be found excellent Turkish baths. A sumptuous double set of bath rooms is provided in theFriedrichsbadin Baden-Baden, which was erected at a cost of about 100,000l.The Turkish baths are placed on the ground floor, and in other floors are provided baths of every kind. Each set of rooms for the ladies' and gentlemen's Turkish baths comprises undressing room and cooling room, two sudorific chambers, shampooing room, douche room with cold plunge bath, and a separate chamber with warm plunge. Adjoining the shampooing room are the warm and hot rooms of the Russian bath. Between the two sets of bath rooms is placed a handsome circular swimming-bath, and adjoining, theWildbad—a deep, full bath of warm mineral water.

One of the most elaborate Turkish baths erected, in modern times, is that on the Praterstern, at Vienna, which cost, in round numbers, 125,000l.The building comprises ladies' and gentlemen's Turkish and Russian baths, and includes a residential block for those taking a course of baths. The whole of the arrangements are on a most sumptuous scale. The cooling room of the gentlemen's baths measures no less than 35.3 metres long, and 10.5 broad. There are both warm and cold plunge baths, besides a fine circularpiscina, in a circular domed chamber. Similar provisions are made for the ladies on a smaller scale. Though plain and somewhat heavy in external design, the building internally is resplendent with tiles, marble, and ornamental woodwork.

It is scarcely necessary to say anything more as to the subsidiary apartments of a Turkish bath. Such adjuncts as the entrance hall and vestibule, the pay office, refreshment department, laundry and drying-rooms, hairdressing and attendants' rooms, and other minor provisions, are obviously simple matters, requiring little or no detailed explanation. Sufficient has already been said about them to enable the architect, assisted by the drawings given, to design them with convenience and economy. The features peculiar to the bath are those requiring careful consideration. It is upon the design of the hot rooms, the cooling rooms, and the washing rooms that the success or non-success of a new bathing establishment depends, and too much study cannot be given to these apartments.

The Sudorific Chambers.

These are now generally required in a suite of three—"first, second, and third hot." The first is the tepidarium, and must be by far the largest of the three, since in it the greater number of bathers will assemble at one time. The last must be the hottest room—the laconicum—andneed only be a very small one, as but few bathers use it, and that, generally, for a very short time. The second hot room should be about midway, in size and temperature, between the first and the third. Of a given area allotted to the hot rooms, from one-half to two-thirds may be devoted to the tepidarium, and from one-third to one-half to the super-heated rooms, always remembering that it is well to err on the side of providing a large and roomy tepidarium. Of the space allowed for the smaller rooms, one-quarter to one-third may be given to the hottest, and the remaining space to the second hot-room, or calidarium.

The hot rooms, it should be remembered, are strictly bath rooms, and must be treated as such; that is to say, the whole of the floors, walls, ceilings, partitions, and fittings, must be capable of being frequently cleansed with water. The choice of materials to be employed for lining the walls, &c., is therefore limited. And in two ways. For not only must they be of this washable nature, but they must be of a character to resist the influence of the heat. Happily, this is an age of glazed-ware and vitrified goods of every description. Glazed and fire-burnt bricks and tiles, terracottas, faïence, and pottery generally, are now so extensively manufactured that there is little excuse for not constructing a bath throughout of materials at once washable and unaffected by high temperatures. Still, in baths where rigid economy must be studied, and lowness of cost is the great object,plastermay be placed upon the walls of the hot rooms, and in its way will answer admirably, and be fairly washable. It has even one advantage—itdoes not become unbearably hot to the touch, should the bather lean against the walls, whereas, with a highly glazed surface the walls become burning hot, and need lining with a dado of felt or other non-conducting substance. And since this latter method overcomes the objection named, the best possible material for lining the walls is glazed brickwork. In cases where elaboration is desired, they may be lined with marbles and faïence. With a judicious selection of colours, however, a very pleasing appearance can be given by the employment of simple glazed brickwork, and at a very moderate cost.

The flooring in cheap baths is admirably formed by simple unglazed tile pavement over concrete. A slight roughness is very agreeable to the feet. Glazed tiles are inadmissible, as they become too hot for the naked feet; and if the slightest moisture come upon them they are rendered dangerously slippery. In elaborate baths, marble, and marble mosaics may be used, but the surface must not be too smooth. In providing floorings, the greatest care should be taken to avoid anything liable to become slippery to the tread.

Floors of ordinary-sized baths, where the soil is reliable, may be of 6 in. of concrete, with mosaics or tiles laid in cement. The benches for reclining and shampooing must be built up from this with half-brick risers and glazed fronts, having weathered marble slabs with rounded nosings, as illustrated at Fig. 3.

The ceilings of the fire and heat-proof floors, which, when there are other apartments above,mustbe provided over the hot rooms, may be of plaster. But the heat at the ceiling level is very great, and the plaster hererapidly darkens and blackens, and in this state looks anything but attractive in a place where the mere suspicion of uncleanliness is nauseating. If employed (and this remark also applies to plaster on walls), it should be used in the simplest manner possible, without the slightest attempt at modelling the surface. Enamelled iron may be used, with effect, for ceilings. The little laconicum is best covered with a flat vault, the soffit being of glazed bricks, and the springing being brought down below the main ceiling level.

Fire-proof floors over hot rooms may be of any design that is also heat-proof. The main point is to have a sufficient thickness of concrete, and the iron joists and cross girders well buried therein. Ordinary floors may be rendered heat-proof by partially filling the space between ceiling and floorboards with sawdust or sheets of slag-wool laid on boarding nailed to fillets on the joists. The sawdust should be filled up to the top of the joists; over this a layer of thick felt, and the boarding above. This, however, is only a makeshift when compared with a solid floor of concrete.

When the hot rooms are in a basement in the open, they may be top-lighted, and the ceiling above need not be a heavy fire-proof construction. A sufficient air space, however, must be provided between the ceiling and roof, to prevent irradiation of heat—a remark that applies also to anything in the shape of a window in the sudatorium. It must be double, or look into an area covered with pavement lights. In the case of a top-lighted room there must be a ceiling-light and a skylight.

Where the hot rooms are constructed quite above ground, consideration must be given to the prevention of loss of heat by radiation. This may be effected by providing thick hollow walls, the cavity being often usefully employed for the extraction of the vitiated air.

Heat permeating other apartments and neighbouring premises is a frequent source of trouble to the builder of a Turkish bath, but is always the result of want of study of the subject on the part of the designer. The evil may be successfully combated if it be resolved that no hot room, shampooing room, or lavatorium shall be constructed without a thick concrete floor above, and that the furnace chamber be perfectly and completely insulated. Should the walls of the hot rooms adjoin apartments to which it is urgently necessary that the heat should be prevented from being transmitted, they may be rendered heat-proof by building them hollow and filling the cavity with soot.

Double doors and lobbies must be employed to prevent the transmission of the heated air to rooms where its presence would be injurious. To keep the hot air of the bath-rooms from the cooling-rooms, &c., should be the great aim of the architect. Many baths are rendered quite repulsive by what I may perhaps term the "sudorific smell" that assails the nostrils of the visitor entering the vestibule.

The space allotted to the sudatory chambers may be divided into the various rooms, either by glazed brick walls or by framed and glazed partitions; or again, they may be formed by a combination of solid brickwork and glazed woodwork. Any piers in these rooms must be of brickwork, iron columns being inadmissible. Masonry, too, must be discarded throughout, or used with caution. Some stones—such as red Mansfield—become black with exposure to the heat, and others fare still worse. The employment of porous and absorbent materials must be guarded against throughout this portion of the bath, as it should be remembered that effete matters, particles of waste tissue, and possibly the germs of disease, are continually being given off by the perspiring bathers, and must be prevented from finding a lodgment.

The best woods for use in the hot rooms are close-grained and free from essential oils. Mahogany is excellently adapted for the purpose, and so, also, is teak. Pitch pine must be discarded altogether. Deal, when employed, should be perfectly seasoned, and may then give trouble from the exudation of turpentine.

The partitions, and the doorways in them, must be so placed as to govern the flow of hot air. So long as the main divisions be planned with this end in view, the separate rooms may be divided and broken up as the architect may fancy. But the constant flow of the heated air from the inlet in the hottest room towards the lavatorium must not be interfered with by recesses, nooks, and corners, or anything that would cause the current to stagnate. And here we may see the practical advantage possessed by a bath where the hot rooms areen suite, and in a line with one axis. For here the air sweeps uninterruptedly through the differentchambers without eddying around corners and stagnating in recesses far out of the main stream.

The doorways in the partitions should not be too lofty. They should not be hung with doors, as anything necessary in this way will be amply supplied by depending curtains.

Glazingin the hot rooms requires care. The glass will expand considerably with the heat, and, what is more, if the furnace fire die out rapidly at any time, will contract and fracture. This difficulty, however, is the result of bad management, and does not concern the architect, unless, indeed, it be the result of improper fixing. Even moderate-sized sheets of glass should be carefully fixed in chamois leather with screwed beading,puttybeing wholly inadmissible. The sheets of glass should not be of too large dimensions. Rolled glass will be found the cheapest in the end, as inferior qualities, where homogeneity of texture is wanting, will crack and split in all directions. Lead glazing should be altogether discarded.

No provision for draining the hot rooms is necessary, as they must, when in use, be kept free from moisture. The floor may, however, if thought desirable, be laid with an imperceptible fall the way the water would be swept when cleansing—viz. towards the lavatorium.

As the best position for a bather to assume in the sudatorium is one approaching to the horizontal, a bath cannot be considered complete unless a liberal number of marble-slabbed benches be provided. These should run round the solid walls, the risers of the benches being formed of brickwork—glazed, faced with tiles, orplastered—and white marble slabs set thereon. These slabs cannot be less than 24 in. wide, and must be of the ordinary seat height—not lower. In the risers must be provided a liberal number of "hit-and-miss" ventilator gratings, the vitiated air finding its way from the space beneath the slabs in the way designed, which may be into surrounding areas, into hollow walls, or into a flue or flues running the whole height of the building.

The air at the floor line and that at the ceiling level being of vastly different temperatures, it follows that an arrangement might be designed whereby the benches might be stepped in three or four rows, and, by ascending, the bather could select any temperature he might choose. Such an arrangement was often employed in the baths of the ancient Romans, and has been tried in modern institutions; but it should be avoided. The expirations from the lungs and the exudations from the bodies of the bathersfall, and it therefore follows that all below the first tier would be breathing air polluted by those above them. The system, therefore, stands condemned.

As regards height, the sudorific chambers should not be too lofty, or they cannot, on the ordinary hot-air plan, be heated with due economy. The vastness of the old Roman tepidarium would have been impracticable under this system; but with the heat radiating direct from the walls and the floors, there was no difficulty. It is far better to have a comparatively low chamber with a constant stream of freshly-heated air passing through it, than a lofty one with a sluggish current. From 10 to 15 or16 ft. may be taken as moderate extremes of height in a public bath. The small third hot room will be less lofty if the heating-chamber be placed under it; for by raising the floor of the laconicum a few feet, so as to necessitate ascending to it by a few steps from the level of the tepidarium, one can more economically construct the furnace chamber.

This latter, which I have more particularly described and illustrated in the chapter on heating and ventilation, should, if the system adopted be on the ordinary hot-air principle, be so placed that an abundant supply of fresh pure cold air can be obtained for the furnace, which, when heated, can be delivered into the hottest room above, not less than 5 ft. from the level of the floor of that chamber, and, also, where a smoke flue of ample section can be constructed. The heated air may be delivered through the gratings in the walls of the laconicum, or a shaft of glazed brickwork, of rectangular section, may be constructed against the end wall and coped at the required level—5 ft. or more above the floor line. Should the exigencies of the site separate the furnace chamber from immediate connection with the hottest room, the heated air must be conducted from the former to the latter by means of a large shaft or shafts of glazed brickwork. Similar means may have to be employed to bring the cold air to the heating-chamber, and at the mouth of this shaft some provision must be made for filtering the air before it is brought into contact with the heating surfaces of the furnace.

Horizontal and inclined flues for conducting hot or cold air may be carried from point to point on rollediron joists having tooled York slabs set thereon, the flues being constructed of 4½ in. brickwork with glazed face internally, and covered with tooled York slabs. Provision must be made, in such flues, for effective cleansing, by means of iron air-tight doors.

The Lavatorium and Shampooing Room.

The lavatorium and shampooing room now engage our attention. In elaborate baths they may, for the sake of effect, be distinct apartments, while, where strict economy must be studied, they may be comprised in one room; and where, again, space is extremely valuable, the plunge bath and douche may be also included. If the first arrangement be adopted, the shampooing room must be connected with the tepidarium, and the lavatorium placed next. Where the combination apartment is used, it will take the position of the shampooing room. Practically, the combination arrangement is the best. It is putting the bather to needless and undesirable trouble to require him to move from one apartment to another during the washing process.

The suite of washing and shampooing rooms may be arranged in either one of the following ways, according to the pretensions and requirements of the establishment:—(1) A shampooing room, a lavatorium, a douche room, and a plunge bath chamber; (2) a combined shampooing and washing room, and a combined douche and plunge bath chamber; (3) several small combined shampooing and washing rooms, a douche room, and a plunge bath chamber; (4) an apartment comprisingshampooing slabs, washing basins, douche, &c., and a plunge bath.

A single shampooing room does not present a very complicated problem to the designer. The chief object to be borne in mind is that the shampooers require "elbow-room," and their patient in a convenient position to allow of their practising their art. As this is no light task—if properly performed—it becomes of urgent moment that the apartment should be no less perfectly ventilated than a sudorific chamber. In a vitiated atmosphere, no shampooer can work well for a prolonged period, and, moreover, pure air is as necessary for the bathers when in these places, as when they are in the hot rooms.

The shampooing benches may be similar in description and size to those in the hot rooms. A width of 2 ft. is an ample provision, since the shampooer can more conveniently work with the bather as near him as possible. The benches may be constructed in a similar manner to those before described. They must be arranged on plan so that the shampooer has ample room, whilst at the same time space is not extravagantly wasted. The benches must be topped with white marble slabs. They may run round the wall, or be placed at right angles to them; or, again, if found more convenient, they may be altogether isolated. Similar means of ventilating the shampooing and washing rooms as the hot rooms must be provided. The vitiated air must be extracted at the floor level, as the temperature here must be maintained considerably above that of respired air.

Movable wooden-framed marble-topped benches maybe substituted for those of a permanent type; but the plan has nothing to recommend it except lowness of cost.

The separate lavatorium need not be so large as its adjoining shampooing room, as here the bathers will not recline, but sit or stand before washing-basins, to which must be conducted the flow pipes of hot water, and branches from the cold water supply pipe. These basins—which may be of glazed earthenware if solid marble cannot be afforded—should be large and capacious. Of water-fittings I shall speak under the head of "Appliances."

In a combined shampooing and washing room the benches and basins will be required together. The basins may be fixed under a hole in the marble slabs, or affixed to the walls, as may be convenient. Whilst arranging the position of the benches with regard to the room, and the basins with regard to the benches, it will be as well to remember the postures that the bather assumes whilst being shampooed—viz. 1st, sitting; 2nd, on the back; 3rd, reverse. The basin must be so placed with respect to the slab that the shampooer may, without altering his position, take water from the basin with his handbowl, and pour it over the bather. A shampooer cannot well work with less than 5 ft. 6 in. between his slab and that of his adjoining fellow, when the slabs are at right angles to the wall and the adjoining shampooer is also working in the same space between the two benches. Where the room is long and a row of benches are placed at right angles to the wall, the shampooers have each their separate space to work in. Each one can thenmanage in 4 ft., and the slabs can be set out 6 ft. from centre to centre. Where the long sides of the slabs are against the walls and the basins are sunk into the slabs, there must be at least 7 ft. 6 in. from basin to basin. In the case of slabs at right angles to the walls, the basins are best placed between the slabs.

It is an excellent plan to provide a slight screen in one corner of the washing room, behind which the entering bather may, if he chooses, have a warm spray from a large rose before proceeding to the hot rooms.

In ladies' baths it is well to provide private shampooing recesses by means of partitions of sufficient height, which may be of wood and obscure glass. In this way any shampooing room may be rendered more private. Upright marble slabs will often be found useful in dividing the benches.

The walls and ceilings of the apartments now under consideration may, so long as there be a dado of glazed ware, be lined in the same way as the hot rooms. But as regards flooring, still more care is required to prevent slipperiness. The soap and water that will be plentifully spilt around, renders this precaution needful. Moreover, provision must be made for drainage.

The flooring may be of rough tile mosaic, or simple tiles. Marble is too slippery, and glazed tiles are wholly inadmissible. Marble mosaics, roughly set, may be employed. The fall to which the floor is laid must be determined by the position of the gullies.

The drainage system of a hot-air bath is a most important consideration. In a place where the occupants are, literally,breathing at every pore, it is obvious thattoo much care cannot be taken to prevent all possible odours, and the slightest suspicion of an escape of deleterious sewer gases. The traps employed in the washing rooms should be of the best possible design and material, and proof against the evil known as "siphoning." The gullies above them are best placed adjoining one of the ventilators in the walls, at the floor level, as then a current of air sweeps over them and up the extraction flues. It is not always that an opportunity is afforded to cut off the waste water from the drainage; where the bath rooms are above ground, however, this should be done if practicable. Where possible, an excellent plan is to construct a culvert under the basement floor. In this the whole of the pipes can be placed—the soil-pipes, the lavatorium and plunge bath wastes, &c., and access gained to them by a manhole. By this means a cut-off could be effected between waste-pipes and the sewerage system. The culvert itself could be ventilated by connecting it with an extraction flue. This is all costly; but the builder of a Turkish bath will do well to be prepared to lay out a liberal sum to perfect the system of drainage of the establishment, and in the end, when the public have appreciated the attention bestowed, he will thank his architect for having impressed upon him the necessity for this extra expenditure.

The Douche Room.

The douche room should be a small chamber adjoining the lavatorium, and fitted with a circular needle bathwith shower or douche above, and any other kind of spray bath that may be required. It should not be a dark, cold, uninviting hole. For this reason, and also because a corner is admirably adapted to receive an appliance of the shape of a needle bath, it is better, often, to fit it up in an angle of the lavatorium. But of these additions I shall have much to say anon, as one of the most important points about a bath is the arrangement of the water-fittings. Needle baths will be found indicated, on the plans given in these pages, by an incompleted circle.

The Plunge Bath.

Though, according to medical authorities, this does not form anecessaryappendage to the hot-air bath, it is yet a feature thatmustbe provided in the least pretentious of public establishments. Ever since, and long before, Cicero observed, in a letter to his brother Quintus, "Latiorem piscinam voluissem ubi jactata brachia non offenderentur," men who have taken the hot-air bath have loved the ample plunge. But although it should be sufficiently large for any bather to take a dive, and for an expert to take a true "header," it is a vast mistake to overdo it, and construct a small swimming bath, out of all proportion with the other features of the establishment. One does not look for such an adjunct: it is a great expense to keep up, requires a lot of space, and tempts many to stay too long in the cold water. All purposes will be served by a bath which will allow the bather to swim without touching the sides with his hands,and to dive along under water without danger of striking his head at the other end before he rises to the surface. Wherever possible, the bath should be quite 25 ft. in length and at least 7 ft. wide. In inferior institutions it may be as narrow as 4 ft. and proportionately shorter; but in such a bath one can only flounder about, and healthy bathers will go elsewhere.

In deciding the position of the plunge bath there is one point to be strongly guarded against, and that is, that it be not stowed away in a damp, cold-looking, cellar-like place. Such a position may be all very well when the proprietor wishes to conceal dirty water; but from every other point of view it is highly objectionable. The wise man will bring his bath forward into the lightest possible position, where its clear, limpid waters will look enticing instead of repelling. For preference, it should be placed where the bather will take it naturally,en routeto the frigidarium, as at the Charing Cross baths, previously illustrated. In baths all on one level, it is convenient to place the bath partly in the lavatorium and partly in the frigidarium; but, to most persons, the necessity for passing under the inevitable partition and flap spoils the full enjoyment of the plunge. If placed within the frigidarium, and approached by a door from the lavatorium, some sort of a screen should be provided over the bath, as, at times, the apparition appearing at the above door, in full view of the occupants of the cooling-room, is somewhat ludicrous.

The demands of decency must be borne constantly in mind by the architect of a Turkish bath. If the bather, on leaving the plunge bath, finds himself in the frigidarium, he must ascend the steps under hanging towels. The arrangement that will be found the most convenient—a direct importation from the East—is to suspend a hoop from the ceiling, and from this hang cords attached to towels. The hoop can be swung by an attendant over the end of the bath, and in it the bather can dry himself and be wrapped in towels before proceeding to his couch.

Whether the plunge bath be placed in a separate chamber, in the lavatorium, or partly in the frigidarium, its construction will remain essentially the same. If not in shape and size, in other respects it is a small swimming bath. The weight and pressure of the water must be remembered. A good foundation must be prepared for the bath, with a thick layer of concrete passing well under the side walls and covering the whole floor. The side walls should be built of concrete and lined with white glazed bricks. In certain soils, the excavation for the bath may be puddled with advantage, but if properly constructed, this should be unnecessary. The bottom of the bath need not be flat, as the most economical method of constructing a plunge bath is to make its deepest part about two-thirds of its length from the end at which the bather enters. This may be about 4 ft. 6 in. in depth from bottom to water-line. From this point the floor will slope towards either end, gradually towards the entering end, and more rapidly towards the exit. At either end, where the depth of water should be about 3 ft, must be provided steps for ascent and descent. If the bath be not more than 6 ft. wide, these should occupy the whole width, and be of marble or slabs of some cheaper materialon brick bearers, or they may be built solid. A coping of marble, stone, or purpose-made bricks must be placed on the side walls; and, if the bath be in the cooling room, this may advantageously be raised several inches to protect from splashing. On the coping may be required metal standards and a neat hand-railing. A water-supply pipe and screw-down tap, an overflow and a waste-pipe will be needed, all of which I have more particularly specified hereinafter.

The plunge bath is at times a source of two difficulties—it may leak, and it may be below the level of drain. The first evil is the result of an error in design, or of bad workmanship; the latter is unavoidable. The following method of constructing a plunge bath has been adopted with perfect success:—On the bed of concrete prepared for its floor, erect side walls of concrete, and on the floors and walls thus formed spread two distinct layers of asphalt, covering all and running up to the underside of coping. Against the sides build half-brick walls in cement, with glazed face, and lay the floor with glazed bricks flat. The general principles of this construction I show in the accompanying illustration.

Where the bath is lower than the drain, all that can be done is to drain out as much as possible and pump the remaining water from a "sump" provided in a suitable position. By raising the plunge bath chamber a few feet, the bottom of bath may, in some cases, be just kept above the drain level; but steps must then be placed between it and the washing-room, and steps in such places are dangerous, being very liable to become slippery.

Fig. 4.Fig. 4.A Plunge Bath.View larger image

View larger image

Dressing and cooling accommodation in a public bath may be provided in one of the following ways:—1. A separate frigidarium and distinct dressing room, arranged (a) in direct communication with one another, or (b) connected by a lobby, corridor, or ante-room;—2. A combination apartment arranged (a) with dressing-boxes around the walls, and couches in the centre, orvice versâ; (b) with Oriental divans; (c) with couches screened off in pairs or singly by dwarf wood screens; (d) with a few private dressing-boxes, a few couches, and a few lounges, and easy cushioned chairs; and (e) as a simple room with couches placed therein, by the side of which the bather will undress, and on which he will recline after his bath.

The first of these arrangements may be admirably adapted to unpretentious establishments, where, however, it is wished to employ separate rooms; the second (1,b) is only suitable for elaborate baths of the highest class, in which it may be adopted with excellent and with practical results. Of the combination arrangements (a) has little to recommend it; (b) is expensive and extravagant of space, though it may be made very effective in appearance and very pleasing and comfortable; (c) is suitable for ladies' baths; (d) is very practicable, and gives the apartment a pleasant, homely look; and (e) is best for cheap baths, being the simplestarrangement possible, wholly unsuited, however, to establishments of any pretension.

If the plan include a separate cooling room, it is nothing more than a spacious, cheerful apartment, designed with a view to the reception of couches, and the usual accessories designed in connection with it—the refreshment room, hairdresser and chiropodist's saloon. If this separate cooling room be provided, a distinct apodyterium, with little dressing-boxes, must be designed. If the bath be small and easily managed, curtains may be employed to screen those undressing; but if it be a large establishment, with a number of bathers constantly dressing and undressing, doors must be provided, and these must be under lock and key in charge of an attendant. Each dressing-box must be fitted with a seat, rack, and shelf; and looking-glasses, toilet-tables, and lavatories for general use must be placed in the room, which must be designed in direct connection with the frigidarium.

This should be spacious, light, lofty, and perfectly ventilated, the vitiated air being here extracted at the ceiling level, since the temperature at which the apartment will be kept is an ordinary one—overthat of the exterior air when the weather is cold, andunderwhen it is at all hot.

Where the cooling room and dressing room do not immediately adjoin, the means of communication should be carefully studied, so that it may be free from cross draughts of cold air, and so that it may be dignified and room-like—not a mere passage. It may have the air of an ante-room, but must not be crossed by enteringbathers who have not divested themselves of their boots or shoes. Slamming doors should be avoided, having regard to the exposed condition of the bathers.

In spite of the theoretical and sentimental advantages of separate cooling and dressing-rooms, a combined frigidarium and apodyterium seems to have found favour latterly.

Personally, I would gladly enter a protest against the employment of the combined cooling and dressing room as a decidedly uncleanly habit. It is certainly not pleasant to know that, having obtained perfect physical cleanliness, both inwardly and outwardly, one must return to couches whereon previous bathers may, as likely as not, have, however temporarily, deposited more or less of their underclothing or superimposed raiment. But economy of construction is nowadays a question that must be considered at every step, and the combination apartment saves both space and materials, and is also economical as regards attendance. Moreover, it must be confessed that a cooling room provided with elegant and spacious divans, wherein the bather dresses and undresses, may be made very pleasing to the eye and withal comfortable and convenient. The dressing-boxes, too, of the separate apodyterium are not conducive to the general sense of comfort.

In arranging the plan of a combined cooling and dressing room it is necessary to first decide as to how the apartment will be furnished—viz. which of the plans above mentioned shall be adopted. This is much a matter of individual taste, though, as I have said above, the divan is to be preferred in many cases. It is oftenwell to provide a cooling room of what may be called the "picturesque" order, or the reverse of stiff formality. By this I mean such an arrangement as 2,d. The bather can then choose between reclining in semi-privacy or in the open, or, again, resting in an easy chair. With a handsome plunge bath and a pretty little fountain, such rooms may be rendered very attractive.

Whatever be the plan adopted, it must, I repeat, be carefully thought out previously, and not left as an afterthought. The size of the reclining couch will be found to be the governing feature. This should be 6 ft. 6 in. long by 2 ft. 6 in. wide, or 6 ft. by 2 ft., according as luxury or economy is the end in view. Next to this must be considered the space allowed for each bather to dress in, and also the routes for bathers and attendants. Four feet between the couches is a sufficient space where couches are screened off in pairs.

Couches may be arranged in pairs or singly.Two pairsof couches screened off with only a small space between of 4 ft. or so is an objectional arrangement. It is difficult to explain why this is so; but the bather who has made one of four strangers thus closely penned up will appreciate the objection. An arrangement of four couches must expand into a spacious divan.

At Fig. 5 are shown different ways of arranging couches in the frigidarium. A shows the objectionable arrangement spoken of; B is the comfortable, spacious divan; C the method of placing couches in pairs; and D is a private couch suitable for ladies' baths.

The floor of a cooling room must be boarded. In a bath where cost is subordinate to excellence, a parquetryfloor may be provided, and mats employed, as cleaner than fixed carpets. The walls and ceilings may be treated in any manner that may be chosen—plastered, papered, or decorated with colour.

Fig. 5.Fig. 5.Methods of arranging Couches in Cooling Room.View larger image

Any shaped room may be adopted as a combined frigidarium and apodyterium so long as it fulfils theessential points—i.e. that it be spacious, capable of easy and perfect ventilation, and of being kept cool, light, and cheerful. In the cooling room the bather will often stay longer than in any other apartment, and no pains should be spared to render it healthy, comfortable, and attractive. The hygienic points to be attended to are, that there be an abundant supply of fresh cool air and an effective withdrawal of vitiated air; for thecold-air bathin the cooling room is, in its way, as all-important as the bath of hot air. The freshness of the air is of equally vital importance, as much of theinvigoratingeffect of the bath—that effect which to the minds of the uninformed isweakening—results from submitting the heated skin to volumes of cold air.[2]In arranging any screens or screen walls in the cooling room, therefore, regard must be had to the method of ventilation, that there be no stagnant corners and recesses. The scheme of ventilation must be decided by the nature of the apartment and its position. In most cases the air is best admitted through the windows, fitted with fanlights falling backwards from the top, and extracted by a powerful self-acting exhaust at the ceiling level. In some positions extraction flues will have to be built, and, in others, flues of large area must conduct to the source from which the fresh air is drawn. Under certain circumstances perfect ventilation will not be obtainable without the aid of a powerful blowing fan-wheel driven by a motor of some sort, and running so as to exhaust the vitiated air. The means does not so much matter so long as the end be gained, and an ample supply of cool air obtained. A warm, close "cooling room" is worse than useless. In such places the bather will break out into renewed perspiration, and lie perspiring for hours, and become greatly weakened thereby, with a good chance of taking a chill on leaving the establishment.

Cooling rooms will always remain sufficientlywarmin all weathers if they be in any ordinary relation to the heated apartments; but in the height of summer care is required to keep them sufficiently cool. Where simple, everyday precautions will not suffice, the air itself must be cooled, either by passing it through a cold chamber or over ice-boxes in inlet tubes, or through a water-spray. Only in exceptional cases, however, is it necessary to resort to such measures, as, contrary to the teachings of theorists, it has been found in practice that the proper temperature for the cooling room of a hot-air bath varies in different states of the weather, and should not remain constant all the year round.

Of the many questions that merit attention and study in connection with the Turkish bath, all sink into insignificance by the side of that of theheatingand thenature of the heatsupplied in the sudatory chambers. Other things being equal, it is, after all, theheatingthat distinguishes one bath from another on the score of excellence. The heating of the "bath" is the Alpha and Omega of the whole matter.

There are two ways in which heat may be applied to the body—by direct radiation, as from the sun or an open fire; and by convection, as through a volume of air.

The ancient Roman bathers, with floors below them which rested uponpilæ, or little pillars of brick or tile, around which the flames and hot gases from the furnace played, and surrounded by heated, hollow walls, evidently submitted themselves to the action of a heat that must have been of a purely radiating character.

So, also, in a less perfect manner, the Turks, who employ flues running beneath the floors, and the Moors, who adopt stoves visible to the bathers.

Theoretically, radiant heat in a bath is vastly superior to that which is transmitted to the body through themedium of the air. Its virtues have been extolled by David Urquhart and other eminent authorities on the bath. "There is a difference," says Mr. Urquhart, "between radiating and transmitted caloric.... I cannot pretend to treat of this great secret of nature; to work out this problem a Liebig is required. This I can say, that such heat is more endurable than common heat. There is a liveliness about it which transmitted heat lacks. You are conscious of an electrical action. It is to transmitted heat what champagne is to flat beer.... Let us drop, if you please, the word 'bath': it is 'heat.' Let us away with that absurdity 'hot-air': it is the application of heat to the human frame." Elsewhere this writer has pointed out that the termsthermæ,sèjac, andhammâm—the names given to the bath by the Romans, Moors, and Orientals proper—meanheat, and not "hot-air" or "hot-air bath."

My own studies, observations, and experience lead me to the conclusion that the direction in which we shall improve the "Turkish bath" will be in the way of providing sudatories that shall give off pure, radiant heat in such a manner that the whole surface of the body may be sensible of a degree of heat, while the lungs may breathe comparatively cool air—air that has not passed over the sides of a fiery furnace and been suddenly raised to an enormous temperature, but which has received its heat by a gentle and gradual process of warming. Under this system the heat of which we are sensible is as the gentle Zephyr to rude Boreas or the biting eastern winds. If we go into a kiln of brickwork, such as is employed in firing clay goods, after the charge has beenremoved and all fumes and odours have disappeared, we shall note the soft and balmy nature of the heat that radiates directly from the walls and vaulting. We are, to all practical intents and purposes,in a Roman laconicum. The thick walls have been highly charged with caloric during the firing of the bricks or other articles. They have absorbed vast quantities of heat, and are now giving off the same to the enclosed air and to ourselves standing within. In the old Roman bath the walls were charged with caloric by means of innumerable earthen tubes lining the sides of the laconicum, and covered with a peculiar plaster. But in both cases the nature of the resultant heat is identical. It radiates to one from all sides. There is no acrid biting of the face such as one feels in the worst type ofhot-airbaths; no unpleasant fulness or aching of the head; and no panting or palpitating. Such is the "bath" of pure radiant heat, a thing totally distinct from, and altogether of a different genus to, the bath of heated air. And one might be pardoned for the enthusiasm which would lead one to suggest that it is only in the supplying of this kind of radiant heat in the modern bath that true and rapid progress can be expected, and possibly that not until this great or partial—according as the system of radiation and convection pertains in existing baths—revolution has been effected, will the bath, at present used by the few, become the custom of the many. Some day, peradventure, this hypothetical method of employing pure radiant heat may be rendered possible and practicable, and we may be placed in a bath where we shall receive great heat whilst breathing a comparatively cool atmosphere, and thus receive a measure of that electrical invigoration we experience when, in some sheltered bathing cove, we have exposed our bodies to the fiercest rays of the morning sun whilst yet we breathe the fresh, cool, ozone-laden air.

Till modern invention, however, has provided us with this desideratum in the heating of the bath, we must be satisfied with existing methods. And unless something really practical is perfected, it is far wiser to rely upon the system of heating by convection through the air—the principle, generally adopted, of continuously passing large quantities of freshly-heated air through the sudatory chambers; exposing, however, the heating apparatus, so that a maximum of radiant heat may be obtained; and carefully guarding against injuring the air whilst raising its temperature. If only existing baths were in perfect harmony with this principle, one would have little cause for complaint, and might the more leisurely await the perfecting of the true radiating principle of heating, which I am satisfied is the one upon which we must base all our hopes for the future of the "Turkish" bath.

For practical purposes, it will suffice if the method of heating and ventilating a bath on the hot-air principle be explained. This I shall now do, and subsequently give plans and instructions for methods of heating and ventilating on systems where, by the exposure of the heating surfaces of furnaces, a large proportion of radiant heat is thrown into the hot-rooms.

The necessary appliances, and arrangements for the heating and ventilation of a bath on the ordinary hot-airprinciple comprise a furnace in its chamber, with flues or shafts supplying cold, and drawing off the heated air, and a stokery with provisions for firing and storing coke, &c. Too often the stokery is unscrupulously cramped, and the life of the stoker thereby rendered anything but pleasant. Its design is a simple matter, and perhaps for this reason neglected. The arrangement and construction of the furnace chamber requires care, and the selection of a stove or furnace great judgment. As regards the latter feature, the most important point to consider is the nature of the heating or radiating surfaces. What will raise the air to the required temperature, without in the process depriving it in any way of its vitalising elements, and without adulterating it with either smoke and fumes from leakage, or with particles of foreign matter given off from the material employed in its construction?

There is nothing really better as a radiating surface than ordinary firebrick. From this material a soft heat is given off, differing in quality from that obtained from iron. An iron furnace, however, requires less thought in design, gives less trouble in fitting up, and is cheap, economical, and expeditious. Stoves, therefore, with an iron radiating surface, have been largely adopted in the past, in spite of the objection that, when super-heated, particles of metal are thrown into the air of the hot rooms. Of iron furnaces there are many placed before the public; but though all are doubtless suited to ordinary requirements, there are few that are capable of creditably fulfilling the conditions indispensable for the hygienic heating of the air of a Turkish bath.

These conditions may be summarised as follows:—

1. A maximum of heating-surface, with a minimum of grate space.

2. Perfect immunity from the danger of leakage from the furnace into the hot-air chamber or conduit.

3. Freedom from the defect of liability to overheat the air.

4. Inability to adulterate the air by throwing off matter from the heating surfaces.

Such primary essentials must be constantly borne in mind by the designer of furnaces for the Turkish bath. Their importance must be obvious to all.

Of the many iron stoves, Messrs. Constantine's "Convoluted" stove has been adopted the most frequently, as an eminently practical furnace for the effective heating of the sudatory chambers. The appearance of this stove is familiar to all architects, and it will be unnecessary, in these pages, to minutely describe its construction.

The method of constructing a furnace suitable for a small public bath is, however, shown at Fig. 6. The excavations for stokery and heating chamber being completed, and the position of the furnace determined a solid foundation of concrete must be prepared, upon which the brickwork to support the stove must be laid. At the same time, the foundations for walls of furnace chamber, stokery, coke store, and the side walls for the horizontal cold-air conducting flues will be prepared. These latter must then be built in half-brick with glazed interior face, and the furnace inclosed in similar work, as shown in perspective sketch. The flues must be coveredwith York stone slabs 3 in. thick, up to within three inches or so of the convolutions of the stove, at which distance the side walls of the furnace must be erected, the back one similarly, and the front one round the four projecting doors, which are, respectively, the ash-pit door, the fire door, and two doors for cleansing the horizontal smoke-box and interior of convolutions. The furnace walls must be continued up to a few inches above the bend of iron smoke flue, and then—if, as shown, the furnace be small—covered with a 4-in. York slab in one piece. If the furnace be large, a flat brick arch must form thecovering, as at Fig. 8, where this arch supports the flooring of the laconicum. The openings for the admission of the heated air into the conduit leading into the hot rooms may be either directly above, as shown in the last-named illustration, or in the side, as in Fig. 6, with inclined flues. As a rule, it is more economical, in heating on the principle now under consideration, to place the furnace below the level of the hot rooms; but if desirable to place both on one level, the back wall of the furnace chamber becomes the party wall of the laconicum, and it must be stopped short of the ceiling, and the air debouched over it.


Back to IndexNext