Chapter 3

[11]Recueil des Tables Logarithmiques et Trigonometriques. Par J. C. Schulze. 2 vols. Berlin: 1778.At the time when the calculation and publication of Taylor's Logarithms were undertaken, it so happened that a similar work was in progress in France; and it was not until the calculation of the French work was completed, that its author was informed of the publication of the English work. This circumstance caused the French calculator to relinquish the publication of his tables. The manuscript subsequently passed into the library of Delambre, and, after his death, was purchased at the sale of his books, by Mr Babbage, in whose possession it now is. Some years ago it was thought advisable to compare these manuscript tables with Taylor's Logarithms, with a view to ascertain the errors in each, but especially in Taylor. The two works were peculiarly well suited for the attainment of this end; as the circumstances under which they were produced, rendered it quite certain that they were computed independently of each other. The comparison was conducted under the direction of the late Dr Young, and the result was the detection of the following nineteen errors in Taylor's Logarithms. To enable those who used Taylor's Logarithms to make the necessary corrections in them, the corrections of the detected errors appeared as follows in the Nautical Almanac for 1832.ERRATA,detected inTaylor'sLogarithms.London: 4to, 1792.°    '   "1ECo-tangent of1.35.35for43671read426712MCo-tangent of4.  4.49— 66976—— 669793Sine of4.23.38— 43107—— 430074Sine of4.23.39— 43381—— 432815SSine of6.45.52— 10001—— 110016KkCo-sine of14.18.  3—  3398—— 32987SsTangent of18.  1.56— 5064—— 60648AaaCo-tangent of21.11.14— 6062—— 59629GggTangent of23.48.19— 6087—— 598710Co-tangent of23.48.19— 3913—— 401311IiiSine of25.  5.  4— 3173—— 318312Sine of25.  5.  5— 3218—— 322813Sine of25.  5.  6— 3263—— 327314Sine of25.  5.  7— 3308—— 331815Sine of25.  5.  8— 3353—— 336316Sine of25.  5.  9— 3398—— 340817QqqTangent of28.19.39— 6302—— 6402184HTangent of35.55.51— 1681—— 1581194KCo-sine of37.29.  2— 5503—— 5603An error being detected in this list of ERRATA, we find, in the Nautical Almanac for the year 1833, the following ERRATUM of the ERRATA of Taylor's Logarithms:—'In the list of ERRATA detected in Taylor's Logarithms, forcos. 4° 18' 3", read cos. 14° 18' 2".'Here, however, confusion is worse confounded; for a new error, not before existing, and of much greater magnitude, is introduced! It will be necessary, in the Nautical Almanac for 1836, (that for 1835 is already published,) to introduce the following:ERRATUM of the ERRATUM of the ERRATA of TAYLOR'sLogarithms. For cos. 4° 18' 3",readcos. 14° 18' 3".If proof were wanted to establish incontrovertibly the utter impracticability of precluding numerical errors in works of this nature, we should find it in this succession of error upon error, produced, in spite of the universally acknowledged accuracy and assiduity of the persons at present employed in the construction and management of the Nautical Almanac. It is only by themechanical fabrication of tablesthat such errors can be rendered impossible.On examining this list with attention, we have been particularly struck with the circumstances in which these errors appear to have originated. It is a remarkable fact, that of the above nineteen errors, eighteen have arisen from mistakes incarrying. Errors 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, have arisen from a carriage being neglected; and errors 1, 3, 4, 6, 8, 9, and 18, from a carriage being made where none should take place. In four cases, namely, errors 8, 9, 10, and 16, this has causedtwofigures to be wrong. The only error of the nineteen which appears to have been a press error is the second; which has evidently arisen from the type 9 being accidentally inverted, and thus becoming a 6. This may have originated with the compositor, but more probably it took place in the press-work; the type 9 being accidentally drawn out of the form by the inking-ball, as mentioned in a former case, and on being restored to its place, inverted by the pressman.There are two cases among the above errata, in which an error, committed in the calculation of one number, has evidently been the cause of other errors. In the third erratum, a wrong carriage was made, in computing the sine of 4° 23' 38". The next number of the table was vitiated by this error; for we find the next erratum to be in the sine of 4° 23' 39", in which the figure similarly placed is 1 in excess. A still more extensive effect of this kind appears in errata 11, 12, 13, 14, 15, 16. A carriage was neglected in computing the sine of 25° 5' 4", and this produced a corresponding error in the five following numbers of the table, which are those corrected in the five following errata.This frequency of errors arising in the process of carrying, would afford a curious subject of metaphysical speculation respecting the operation of the faculty of memory. In the arithmetical process, the memory is employed in a twofold way;—in ascertaining each successive figure of the calculated result by the recollection of a table committed to memory at an early period of life; and by another act of memory, in which the number carried from column to column is retained. It is a curious fact, that this latter circumstance, occurring only the moment before, and being in its nature little complex, is so much more liable to be forgotten or mistaken than the results of rather complicated tables. It appears, that among the above errata, the errors 5, 7, 10, 11, 17, 19, have been produced by the computer forgetting a carriage; while the errors 1, 3, 6, 8, 9, 18, have been produced by his making a carriage improperly. Thus, so far as the above list of errata affords grounds for judging, it would seem, (contrary to what might be expected,) that the error by which improper carriages are made is as frequent as that by which necessary carriages are overlooked.We trust that we have succeeded in proving, first, the great national and universal utility of numerical tables, by showing the vast number of them, which have been calculated and published; secondly, that more effectual means are necessary to obtain such tables suitable to the present state of the arts, sciences and commerce, by showing that the existing supply of tables, vast as it certainly is, is still scanty, and utterly inadequate to the demands of the community;—that it is rendered inefficient, not only in quantity, but in quality, by its want of numerical correctness; and that such numerical correctness is altogether unattainable until some more perfect method be discovered, not only of calculating the numerical results, but of tabulating these,—of reducing such tallies to type, and of printing that type so as to intercept the possibility of error during the press-work. Such are the ends which are proposed to be attained by the calculating machinery invented by Mr Babbage.The benefits to be derived from this invention cannot be more strongly expressed than they have been by Mr Colebrooke, President of the Astronomical Society, on the occasion of presenting the gold medal voted by that body to Mr Babbage:—'In no department of science, or of the arts, does this discovery promise to be so eminently useful as in that of astronomy, and its kindred sciences, with the various arts dependent on them. In none are computations more operose than those which astronomy in particular requires;—in none are preparatory facilities more needful;—in none is error more detrimental. The practical astronomer is interrupted in his pursuit, and diverted from his task of observation by the irksome labours of computation, or his diligence in observing becomes ineffectual for want of yet greater industry of calculation. Let the aid which tables previously computed afford, be furnished to the utmost extent which mechanism has made attainable through Mr Babbage's invention, and the most irksome portion of the astronomer's task is alleviated, and a fresh impulse is given to astronomical research.'The first step in the progress of this singular invention was the discovery of some common principle which pervaded numerical tables of every description; so that by the adoption of such a principle as the basis of the machinery, a corresponding degree of generality would be conferred upon its calculations. Among the properties of numerical functions, several of a general nature exist; and it was a matter of no ordinary difficulty, and requiring no common skill, to select one which might, in all respects, be preferable to the others. Whether or not that which was selected by Mr Babbage affords the greatest practical advantages, would be extremely difficult to decide—perhaps impossible, unless some other projector could be found possessed of sufficient genius, and sustained by sufficient energy of mind and character, to attempt the invention of calculating machinery on other principles. The principle selected by Mr Babbage as the basis of that part of the machinery which calculates, is the Method of Differences; and he has in fact literally thrown this mathematical principle into wheel-work. In order to form a notion of the nature of the machinery, it will be necessary, first to convey to the reader some idea of the mathematical principle just alluded to.A numerical table, of whatever kind, is a series of numbers which possess some common character, and which proceed increasing or decreasing according to some general law. Supposing such a series continually to increase, let us imagine each number in it to be subtracted from that which follows it, and the remainders thus successively obtained to be ranged beside the first, so as to form another table: these numbers are called thefirst differences. If we suppose these likewise to increase continually, we may obtain a third table from them by a like process, subtracting each number from the succeeding one: this series is called thesecond differences. By adopting a like method of proceeding, another series may be obtained, called thethird differences; and so on. By continuing this process, we shall at length obtain a series of differences, of some order, more or less high, according to the nature of the original table, in which we shall find the same number constantly repeated, to whatever extent the original table may have been continued; so that if the next series of differences had been obtained in the same manner as the preceding ones, every term of it would be 0. In some cases this would continue to whatever extent the original table might be carried; but in all cases a series of differences would be obtained, which would continue constant for a very long succession of terms.As the successive serieses of differences are derived from the original table, and from each other, bysubtraction, the same succession of series may be reproduced in the other direction byaddition. But let us suppose that the first number of the original table, and of each of the series of differences, including the last, be given: all the numbers of each of the series may thence be obtained by the mere process of addition. The second term of the original table will be obtained by adding to the first the first term of the first difference series; in like manner, the second term of the first difference series will be obtained by adding to the first term, the first term of the third difference series, and so on. The second terms of all the serieses being thus obtained, the third terms may be obtained by a like process of addition; and so the series may be continued. These observations will perhaps be rendered more clearly intelligible when illustrated by a numerical example. The following is the commencement of a series of the fourth powers of the natural numbers:—No.Table.1121638142565625612967240184096965611010,0001114,6411220,7361328,561By subtracting each number from the succeeding one in this series, we obtain the following series of first differences:15651753696711105169524653439464160957825In like manner, subtracting each term of this series from the succeeding one, we obtain the following series of second differences:—50110194302434590770974120214541730Proceeding with this series in the same way, we obtain the following series of third differences:—6084108132156180204228252276Proceeding in the same way with these, we obtain the following for the series of fourth differences:—242424242424242424It appears, therefore, that in this case the series of fourth differences consists of a constant repetition of the number 24. Now, a slight consideration of the succession of arithmetical operations by which we have obtained this result, will show, that by reversing the process, we could obtain the table of fourth powers by the mere process of addition. Beginning with the first numbers in each successive series of differences, and designating the table and the successive differences by the letters T, D1D2D3D4, we have then the following to begin with:—TD1D2D3D4115506024Adding each number to the number on its left, and repeating 24, we get the following as the second terms of the several series:—TD1D2D3D416651108424And, in the same manner, the third and succeeding terms as follows:—No.TD1D2D3D4111550602421665110842438117519410824425636930213224562567143415624612961105590180247240116957702042484096246597422824965613439120225224101000046411454276111464160951730122073678251328561There are numerous tables in which, as already stated, to whatever order of differences we may proceed, we should not obtain a series of rigorously constant differences; but we should always obtain a certain number of differences which to a given number of decimal places would remain constant for a long succession of terms. It is plain that such a table might be calculated by addition in the same manner as those which have a difference rigorously and continuously constant; and if at every point where the last difference requires an increase, that increase be given to it, the same principle of addition may again be applied for a like succession of terms, and so on.By this principle it appears, that all tables in which each series of differences continually increases, may be produced by the operation of addition alone; provided the first terms of the table, and of each series of differences, be given in the first instance. But it sometimes happens, that while the table continually increases, one or more serieses of differences may continually diminish. In this case, the series of differences are found by subtracting each term of the series, not from that which follows, but from that which precedes it; and consequently, in the re-production of the several serieses, when their first terms are given, it will be necessary in some cases to obtain them byaddition, and in others bysubtraction. It is possible, however, still to perform all the operations by addition alone: this is effected in performing the operation of subtraction, by substituting for the subtrahend itsarithmetical complement, and adding that, omitting the unit of the highest order in the result. This process, and its principle, will be readily comprehended by an example. Let it be required to subtract 357 from 768.The common process would be as follows:—From768Subtract357——Remainder411Thearithmetical complementof 357, or the number by which it falls short of 1000, is 643. Now, if this number be added to 768, and the first figure on the left be struck out of the sum, the process will be as follows:—To768Add643——Sum1411——Remainder sought411The principle on which this process is founded is easily explained. In the latter process we have first added 643, and then subtracted 1000. On the whole, therefore, we have subtracted 357, since the number actually subtracted exceeds the number previously added by that amount.Since, therefore, subtraction may be effected in this manner by addition, it follows that the calculation of all serieses, so far as an order of differences can be found in them which continues constant, may be conducted by the process of addition alone.It also appears from what has been stated, that each addition consists only of two operations. However numerous the figures may be of which the several pairs of numbers to be thus added may consist, it is obvious that the operation of adding them can only consist of repetitions of the process of adding one digit to another; and of carrying one from the column of inferior units to the column of units next superior when necessary. If we would therefore reduce such a process to machinery, it would only be necessary to discover such a combination of moving parts as are capable of performing these two processes ofaddingandcarryingon two single figures; for, this being once accomplished, the process of adding two numbers, consisting of any number of digits, will be effected by repeating the same mechanism as often as there are pairs of digits to be added. Such was the simple form to which Mr Babbage reduced the problem of discovering the calculating machinery; and we shall now proceed to convey some notion of the manner in which he solved it.For the sake of illustration, we shall suppose that the table to be calculated shall consist of numbers not exceeding six places of figures; and we shall also suppose that the difference of the fifth order is the constant difference. Imagine, then, six rows of wheels, each wheel carrying upon it a dial-plate like that of a common clock, but consisting ofteninstead oftwelvedivisions; the several divisions being marked 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Let these dials be supposed to revolve whenever the wheels to which they are attached are put in motion, and to turn in such a direction that the series of increasing numbers shall pass under the index which appears over each dial:—thus, after 0 passes the index, 1 follows, then 2, 3, and so on, as the dial revolves. In Fig. 1 are represented six horizontal rows of such dials.fig01Fig. 1.The method of differences, as already explained, requires, that in proceeding with the calculation, this apparatus should perform continually the addition of the number expressed upon each row of dials, to the number expressed upon the row immediately above it. Now, we shall first explain how this process of addition may be conceived to be performed by the motion of the dials; and in doing so, we shall consider separately the processes of addition and carriage, considering the addition first, and then the carriage.Let us first suppose the line D1to be added to the line T. To accomplish this, let us imagine that while the dials on the line D1are quiescent, the dials on the line T are put in motion, in such a manner, that as many divisions on each dial shall pass under its index, as there are units in the number at the index immediately below it. It is evident that this condition supposes, that if 0 be at any index on the line D1, the dial immediately above it in the line T shall not move. Now the motion here supposed, would bring under the indices on the line T such a number as would be produced by adding the number D1to T, neglecting all the carriages; for a carriage should have taken place in every case in which the figure 9 of any dial in the line T had passed under the index during the adding motion. To accomplish this carriage, it would be necessary that the dial immediately on the left of any dial in which 9 passes under the index, should be advanced one division, independently of those divisions which it may have been advanced by the addition of the number immediately below it. This effect may be conceived to take place in either of two ways. It may be either produced at the moment when the division between 9 and 0 of any dial passes under the index; in which case the process of carrying would go on simultaneously with the process of adding; or the process of carrying may be postponed in every instance until the process of addition, without carrying, has been completed; and then by another distinct and independent motion of the machinery, a carriage may be made by advancing one division all those dials on the right of which a dial had, during the previous addition, passed from 9 to 0 under the index. The latter is the method adopted in the calculating machinery, in order to enable its inventor to construct the carrying machinery independent of the adding mechanism.Having explained the motion of the dials by which the addition, excluding the carriages of the number on the row D1, may be made to the number on the row T, the same explanation may be applied to the number on the row D2to the number on the row D1; also, of the number3to the number on the row2, and so on. Now it is possible to suppose the additions of all the rows, except the first, to be made to all the rows except the last, simultaneously; and after these additions have been made, to conceive all the requisite carriages to be also made by advancing the proper dials one division forward. This would suppose all the dials in the scheme to receive their adding motion together; and, this being accomplished, the requisite dials to receive their carrying motions together. The production of so great a number of simultaneous motions throughout any machinery, would be attended with great mechanical difficulties, if indeed it be practicable. In the calculating machinery it is not attempted. The additions are performed in two successive periods of time, and the carriages in two other periods of time, in the following manner. We shall suppose one complete revolution of the axis which moves the machinery, to make one complete set of additions and carriages; it will then make them in the following order:—The first quarter of a turn of the axis will add the second, fourth, and sixth rows to the first, third, and fifth, omitting the carriages; this it will do by causing the dials on the first, third, and fifth rows, to turn through as many divisions as are expressed by the numbers at the indices below them, as already explained.The second quarter of a turn will cause the carriages consequent on the previous addition, to be made by moving forward the proper dials one division.(During these two quarters of a turn, the dials of the first, third, and fifth row alone have been moved; those of the second, fourth, and sixth, have been quiescent.)The third quarter of a turn will produce the addition of the third and fifth rows to the second and fourth, omitting the carriages; which it will do by causing the dials of the second and fourth rows to turn through as many divisions as are expressed by the numbers at the indices immediately below them.The fourth and last quarter of a turn will cause the carriages consequent on the previous addition, to be made by moving the proper dials forward one division.This evidently completes one calculation, since all the rows except the first have been respectively added to all the rows except the last.To illustrate this: let us suppose the table to be computed to be that of the fifth powers of the natural numbers, and the computation to have already proceeded so far as the fifth power of 6, which is 7776. This number appears, accordingly, in the highest row, being the place appropriated to the number of the table to be calculated. The several differences as far as the fifth, which is in this case constant, are exhibited on the successive rows of dials in such a manner, as to be adapted to the process of addition by alternate rows, in the manner already explained. The process of addition will commence by the motion of the dials in the first, third, and fifth rows, in the following manner: The dial A,fig. 1, must turn through one division, which will bring the number 7 to the index; the dial B must turn through three divisions, which will 0 bring to the index; this will render a carriage necessary, but that carriage will not take place during the present motion of the dial. The dial C will remain unmoved, since 0 is at the index below it; the dial D must turn through nine divisions; and as, in doing so, the division between 9 and 0 must pass under the index, a carriage must subsequently take place upon the dial to the left; the remaining dials of the row T,fig. 1, will remain unmoved. In the row D2the dial A2will remain unmoved, since 0 is at the index below it; the dial B2will be moved through five divisions, and will render a subsequent carriage on the dial to the left necessary; the dial C2will be moved through five divisions; the dial D2will be moved through three divisions, and the remaining dials of this row will remain unmoved. The dials of the row D4will be moved according to the same rules; and the whole scheme will undergo a change exhibited infig. 2; a mark (*) being introduced on those dials to which a carriage is rendered necessary by the addition which has just taken place.fig02Fig. 2.The second quarter of a turn of the moving axis, will move forward through one division all the dials which infig. 2are marked (*), and the scheme will be converted into the scheme expressed infig. 3.fig03Fig. 3.In the third quarter of a turn, the dial A1,fig. 3, will remain unmoved, since 0 is at the index below it; the dial B1will be moved forward through three divisions; C1through nine divisions, and so on; and in like manner the dials of the row D3will be moved forward through the number of divisions expressed at the indices in the row D4. This change will convert the arrangement into that expressed infig. 4, the dials to which a carriage is due, being distinguished as before by (*).fig04Fig. 4.The fourth quarter of a turn of the axis will move forward one division all the dials marked (*); and the arrangement will finally assume the form exhibited infig. 5, in which the calculation is completed. The first row T in this expresses the fifth power of 7; and the second expresses the number which must be added to the first row, in order to produce the fifth power of 8; the numbers in each row being prepared for the change which they must undergo, in order to enable them to continue the computation according to the method of alternate addition here adopted.fig05Fig. 5.Having thus explained what it is that the mechanism is required to do, we shall now attempt to convey at least a general notion of some of the mechanical contrivances by which the desired ends are attained. To simplify the explanation, let us first take one particular instance—the dials B and B1,fig. 1, for example. Behind the dial B1is a bolt, which, at the commencement of the process, is shot between the teeth of a wheel which drives the dial B: during the first quarter of a turn this bolt is made to revolve, and if it continued to be engaged in the teeth of the said wheel, it would cause the dial B to make a complete revolution; but it is necessary that the dial B should only move through three divisions, and, therefore, when three divisions of this dial have passed under its index, the aforesaid bolt must be withdrawn: this is accomplished by a small wedge, which is placed in a fixed position on the wheel behind the dial B1, and that position is such that this wedge will press upon the bolt in such a manner, that at the moment when three divisions of the dial B have passed under the index, it shall withdraw the bolt from the teeth of the wheel which it drives. The bolt will continue to revolve during the remainder of the first quarter of a turn of the axis, but it will no longer drive the dial B, which will remain quiescent. Had the figure at the index of the dial B1been any other, the wedge which withdraws the bolt would have assumed a different position, and would have withdrawn the bolt at a different time, but at a time always corresponding with the number under the index of the dial B1: thus, if 5 had been under the index of the dial B1, then the bolt would have been withdrawn from between the teeth of the wheel which it drives, when five divisions of the dial B had passed under the index, and so on. Behind each dial in the row D1there is a similar bolt and a similar withdrawing wedge, and the action upon the dial above is transmitted and suspended in precisely the same manner. Like observations will be applicable to all the dials in the scheme here referred to, in reference to their adding actions upon those above them.There is, however, a particular case which here merits notice: it is the case in which 0 is under the index of the dial from which the addition is to be transmitted upwards. As in that case nothing is to be added, a mechanical provision should be made to prevent the bolt from engaging in the teeth of the wheel which acts upon the dial above: the wedge which causes the bolt to be withdrawn, is thrown into such a position as to render it impossible that the bolt should be shot, or that it should enter between the teeth of the wheel, which in other cases it drives. But inasmuch as the usual means of shooting the bolt would still act, a strain would necessarily take place in the parts of the mechanism, owing to the bolt not yielding to the usual impulse. A small shoulder is therefore provided, which puts aside, in this case, the piece by which the bolt is usually struck, and allows the striking implement to pass without encountering the head of the bolt or any other obstruction. This mechanism is brought into play in the scheme,fig. 1, in the cases of all those dials in which 0 is under the index.Such is a general description of the nature of the mechanism by which the adding process, apart from the carriages, is effected. During the first quarter of a turn, the bolts which drive the dials in the first, third, and fifth rows, are caused to revolve, and to act upon these dials, so long as they are permitted by the position of the several wedges on the second, fourth, and sixth rows of dials, by which these bolts are respectively withdrawn; and, during the third quarter of a turn, the bolts which drive the dials of the second and fourth rows are made to revolve and act upon these dials so long as the wedges on the dials of the third and fifth rows, which withdraw them, permit. It will hence be perceived, that, during the first and third quarters of a turn, the process of addition is continually passing upwards through the machinery; alternately from the even to the odd rows, and from the odd to the even rows, counting downwards.We shall now attempt to convey some notion of the mechanism by which the process of carrying is effected during the second and fourth quarters of a turn of the axis. As before, we shall first explain it in reference to a particular instance. During the first quarter of a turn the wheel B2,fig. 1, is caused by the adding bolt to move through five divisions; and the fifth of these divisions, which passes under the index, is that between 9 and 0. On the axis of the wheel C2, immediately to the left of B2, is fixed a wheel, called in mechanics a ratchet wheel, which is driven by a claw which constantly rests in its teeth. This claw is in such a position as to permit the wheel C2to move in obedience to the action of the adding bolt, but to resist its motion in the contrary direction. It is drawn back by a spiral spring, but its recoil is prevented by a hook which sustains it; which hook, however, is capable of being withdrawn, and when withdrawn, the aforesaid spiral spring would draw back the claw, and make it fall through one tooth of the ratchet wheel. Now, at the moment that the division between 9 and 0 on the dial B2passes under the index, a thumb placed on the axis of this dial touches a trigger which raises out of the notch the hook which sustains the claw just mentioned, and allows it to fall back by the recoil of the spring, and to drop into the next tooth of the ratchet wheel. This process, however, produces no immediate effect upon the position of the wheel C2, and is merely preparatory to an action intended to take place during the second quarter of a turn of the moving axis. It is in effect a memorandum taken by the machine of a carriage to be made in the next quarter of a turn.During the second quarter of a turn, a finger placed on the axis of the dial B2is made to revolve, and it encounters the heel of the above-mentioned claw. As it moves forward it drives the claw before it: and this claw, resting in the teeth of the ratchet wheel fixed upon the axis of the dial C2drives forward that wheel, and with it the dial. But the length and position of the finger which drives the claw limits its action, so as to move the claw forward through such a space only as will cause the dial C2to advance through a single division; at which point it is again caught and retained by the hook. This will be added to the number under its index, and the requisite carriage from B2to C2will be accomplished.In connexion with every dial is placed a similar ratchet wheel with a similar claw, drawn by a similar spring, sustained by a similar hook, and acted upon by a similar thumb and trigger; and therefore the necessary carriages, throughout the whole machinery, take place in the same manner and by similar means.During the second quarter of a turn, such of the carrying claws as have been allowed to recoil in the first, third, and fifth rows, are drawn up by the fingers on the axes of the adjacent dials; and, during the fourth quarter of a turn, such of the carrying claws on the second and fourth rows as have been allowed to recoil during the third quarter of a turn, are in like manner drawn up by the carrying fingers on the axes of the adjacent dials. It appears that the carriages proceed alternately from right to left along the horizontal rows during the second and fourth quarters of a turn; in the one, they pass along the first, third, and fifth rows, and in the other, along the second and fourth.There are two systems of waves of mechanical action continually flowing from the bottom to the top; and two streams of similar action constantly passing from the right to the left. The crests of the first system of adding waves fall upon the last difference, and upon every alternate one proceeding upwards; while the crests of the other system touch upon the intermediate differences. The first stream of carrying action passes from right to left along the highest row and every alternate row, while the second stream passes along the intermediate rows.Such is a very rapid and general outline of this machinery. Its wonders, however, are still greater in its details than even in its broader features. Although we despair of doing it justice by any description which can be attempted here, yet we should not fulfil the duty we owe to our readers, if we did not call their attention at least to a few of the instances of consummate skill which are scattered, with a prodigality characteristic of the highest order of inventive genius, throughout this astonishing mechanism.In the general description which we have given of the mechanism forcarrying, it will be observed, that the preparation for every carriage is stated to be made during the previous addition, by the disengagement of the carrying claw before mentioned, and by its consequent recoil, urged by the spiral spring with which it is connected; but it may, and does, frequently happen, that though the process of addition may not have rendered a carriage necessary, one carriage may itself produce the necessity for another. This is a contingency not provided against in the mechanism as we have described it: the case would occur in the scheme represented infig. 1, if the figure under the index of C2were 4 instead of 3. The addition of the number 5 at the index of C3would, in this case, in the first quarter of a turn, bring 9 to the index of C2: this would obviously render no carriage necessary, and of course no preparation would be made for one by the mechanism—that is to say, the carrying claw of the wheel D2would not be detached. Meanwhile a carriage upon C2has been rendered necessary by the addition made in the first quarter of a turn to B2. This carriage takes place in the ordinary way, and would cause the dial C2, in the second quarter of a turn, to advance from 9 to 0: this would make the necessary preparation for a carriage from C2to D2. But unless some special arrangement was made for the purpose, that carriage would not take place during the second quarter of a turn. This peculiar contingency is provided against by an arrangement of singular mechanical beauty, and which, at the same time, answers another purpose—that of equalizing the resistance opposed to the moving power by the carrying mechanism. The fingers placed on the axes of the several dials in the row D2, do not act at the same instant on the carrying claws adjacent to them; but they are so placed, that their action may be distributed throughout the second quarter of a turn in regular succession. Thus the finger on the axis of the dial A2first encounters the claw upon B2, and drives it through one tooth immediately forwards; the finger on the axis of B2encounters the claw upon C2and drives it through one tooth; the action of the finger on C2on the claw on D2next succeeds, and so on. Thus, while the finger on B2acts on C2, and causes the division from 9 to 0 to pass under the index, the thumb on C2at the same instant acts on the trigger, and detaches the carrying claw on D2, which is forthwith encountered by the carrying finger on C2, and driven forward one tooth. The dial D2accordingly moves forward one division, and 5 is brought under the index. This arrangement is beautifully effected by placing the several fingers, which act upon the carrying claws,spirallyon their axes, so that they come into action in regular succession.We have stated that, at the commencement of each revolution of the moving axis, the bolts which drive the dials of the first, third, and fifth rows, are shot. The process of shooting these bolts must therefore have taken place during the last quarter of the preceding revolution; but it is during that quarter of a turn that the carriages are effected in the second and fourth rows. Since the bolts which drive the dials of the first, third, and fifth rows, have no mechanical connexion with the dials in the second and fourth rows, there is nothing in the process of shooting those bolts incompatible with that of moving the dials of the second and fourth rows: hence these two processes may both take place during the same quarter of a turn. But in order to equalize the resistance to the moving power, the same expedient is here adopted as that already described in the process of carrying. The arms which shoot the bolts of each row of dials are arranged spirally, so as to act successively throughout the quarter of a turn. There is, however, a contingency which, under certain circumstances, would here produce a difficulty which must be provided against. It is possible, and in fact does sometimes happen, that the process of carrying causes a dial to move under the index from 0 to 1. In that case, the bolt, preparatory to the next addition, ought not to be shot until after the carriage takes place; for if the arm which shoots it passes its point of action before the carriage takes place, the bolt will be moved out of its sphere of action, and will not be shot, which, as we have already explained, must always happen when 0 is at the index: therefore no addition would in this case take place during the next quarter of a turn of the axis; whereas, since 1 is brought to the index by the carriage, which immediately succeeds the passage of the arm which ought to bolt, 1 should be added during the next quarter of a turn. It is plain, accordingly, that the mechanism should be so arranged, that the action of the arms, which shoot the bolts successively, should immediately follow the action of those fingers which raise the carrying claws successively; and therefore either a separate quarter of a turn should be appropriated to each of those movements, or if they be executed in the same quarter of a turn, the mechanism must be so constructed, that the arms which shoot the bolts successively, shall severally follow immediately after those which raise the carrying claws successively. The latter object is attained by a mechanical arrangement of singular felicity, and partaking of that elegance which characterises all the details of this mechanism. Both sets of arms are spirally arranged on their respective axes, so as to be carried through their period in the same quarter of a turn; but the one spiral is shifted a few degrees, in angular position, behind the other, so that each pair of corresponding arms succeed each other in the most regular order,—equalizing the resistance, economizing time, harmonizing the mechanism, and giving to the whole mechanical action the utmost practical perfection.The system of mechanical contrivances by which the results, here attempted to be described, are attained, form only one order of expedients adopted in this machinery;—although such is the perfection of their action, that in any ordinary case they would be regarded as having attained the ends in view with an almost superfluous degree of precision. Considering, however, the immense importance of the purposes which the mechanism was destined to fulfil, its inventor determined that a higher order of expedients should be superinduced upon those already described; the purpose of which should be to obliterate all small errors or inequalities which might, even by remote possibility, arise, either from defects in the original formation of the mechanism, from inequality of wear, from casual strain or derangement,—or, in short, from any other cause whatever. Thus the movements of the first and principal parts of the mechanism were regarded by him merely as a first, though extremely nice approximation, upon which a system of small corrections was to be subsequently made by suitable and independent mechanism. This supplementary system of mechanism is so contrived, that if one or more of the moving parts of the mechanism of the first order be slightly out of their places, they will be forced to their exact position by the action of the mechanical expedients of the second order to which we now allude. If a more considerable derangement were produced by any accidental disturbance, the consequence would be that the supplementary mechanism would cause the whole system to become locked, so that not a wheel would be capable of moving; the impelling power would necessarily lose all its energy, and the machine would stop. The consequence of this exquisite arrangement is, that the machine will either calculate rightly, or not at all.The supernumerary contrivances which we now allude to, being in a great degree unconnected with each other, and scattered through the machinery to a certain extent, independent of the mechanical arrangement of the principal parts, we find it difficult to convey any distinct notion of their nature or form.In some instances they consist of a roller resting between certain curved surfaces, which has but one position of stable equilibrium, and that position the same, however the roller or the curved surfaces may wear. A slight error in the motion of the principal parts would make this roller for the moment rest on one of the curves; but, being constantly urged by a spring, it would press on the curved surface in such a manner as to force the moving piece on which that curved surface is formed, into such a position that the roller may rest between the two surfaces; that position being the one which the mechanism should have. A greater derangement would bring the roller to the crest of the curve, on which it would rest in instable equilibrium; and the machine would either become locked, or the roller would throw it as before into its true position.In other instances a similar object is attained by a solid cone being pressed into a conical seat; the position of the axis of the cone and that of its seat being necessarily invariable, however the cone may wear: and the action of the cone upon the seat being such, that it cannot rest in any position except that in which the axis of the cone coincides with the axis of its seat.Having thus attempted to convey a notion, however inadequate, of the calculating section of the machinery, we shall proceed to offer some explanation of the means whereby it is enabled, to print its calculations in such a manner as to preclude the possibility of error in any individual printed copy.On the axle of each of the wheels which express the calculated number of the table T, there is fixed a solid piece of metal, formed into a curve, not unlike the wheel in a common clock, which is called thesnail. This curved surface acts against the arm of a lever, so as to raise that arm to a higher or lower point according to the position of the dial with which the snail is connected. Without entering into a more minute description, it will be easily understood that the snail may be so formed that the arm of the lever shall be raised to ten different elevations, corresponding to the ten figures of the dial which may be brought under the index. The opposite arm of the lever here described puts in motion a solid arch, or sector, which carries ten punches: each punch bearing on its face a raised character of a figure, and the ten punches bearing the ten characters, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. It will be apparent from what has been just stated, that thistype sector(as it is called) will receive ten different attitudes, corresponding to the ten figures which may successively be brought under the index of the dial-plate. At a point over which the type sector is thus moved, and immediately under a point through which it plays, is placed a frame, in which is fixed a plate of copper. Immediately over a certain point through which the type sector moves, is likewise placed abent lever, which, being straightened, is forcibly pressed upon the punch which has been brought under it. If the type sector be moved, so as to bring under the bent lever one of the steel punches above mentioned, and be held in that position for a certain time, the bent lever, being straightened, acts upon the steel punch, and drives it against the face of the copper beneath, and thus causes a sunken impression of the character upon the punch to be left upon the copper. If the copper be now shifted slightly in its position, and the type sector be also shifted so as to bring another punch under the bent lever, another character may be engraved on the copper by straightening the bent lever, and pressing it on the punch as before. It will be evident, that if the copper was shifted from right to left through a space equal to two figures of a number, and, at the same time, the type sector so shifted as to bring the punches corresponding to the figures of the number successively under the bent lever, an engraved impression of the number might thus be obtained upon the copper by the continued action of the bent lever. If, when one line of figures is thus obtained, a provision be made to shift the copper in a direction at right angles to its former motion, through a space equal to the distance between two lines of figures, and at the same time to shift it through a space in the other direction equal to the length of an entire line, it will be evident that another line of figures might be printed below the first in the same manner.The motion of the type sector, here described, is accomplished by the action of the snail upon the lever already mentioned. In the case where the number calculated is that expressed infig. 1, the process would be as follows:—The snail of the wheel F1, acting upon the lever, would throw the type sector into such an attitude, that the punch bearing the character 0 would come under the bent lever. The next turn of the moving axis would cause the bent lever to press on the tail of the punch, and the character 0 would be impressed upon the copper. The bent lever being again drawn up, the punch would recoil from the copper by the action of a spring; the next turn of the moving axis would shift the copper through the interval between two figures, so as to bring the point destined to be impressed with the next figure under the bent lever. At the same time, the snail of the wheel E would cause the type sector to be thrown into the same attitude as before, and the punch would be brought under the bent lever; the next turn would impress the figure beside the former one, as before described. The snail upon the wheel D would now come into action, and throw the type sector into that position in which the punch bearing the character 7 would come under the bent lever, and at the same time the copper would be shifted through the interval between two figures; the straightening of the lever would next follow, and the character 7 would be engraved. In the same manner, the wheels C, B, and A would successively act by means of their snails; and the copper being shifted, and the lever allowed to act, the number 007776 would be finally engraved upon the copper: this being accomplished, the calculating machinery would next be called into action, and another calculation would be made, producing the next number of the Table exhibited infig. 5. During this process the machinery would be engaged in shifting the copper both in the direction of its length and its breadth, with a view to commence the printing of another line; and this change of position would be accomplished at the moment when the next calculation would be completed: the printing of the next number would go on like the former, and the operation of the machine would proceed in the same manner, calculating and printing alternately. It is not, however, at all necessary—though we have here supposed it, for the sake of simplifying the explanation—that the calculating part of the mechanism should have its action suspended while the printing part is in operation, orvice versa; it is not intended, in fact, to be so suspended in the actual machinery. The same turn of the axis by which one number is printed, executes a part of the movements necessary for the succeeding calculation; so that the whole mechanism will be simultaneously and continuously in action.Of the mechanism by which the position of the copper is shifted from figure to figure, from line to line, we shall not attempt any description. We feel that it would be quite vain. Complicated and difficult to describe as every other part of this machinery is, the mechanism for moving the copper is such as it would be quite impossible to render at all intelligible, without numerous illustrative drawings.The engraved plate of copper obtained in the manner above described, is designed to be used as a mould from which a stereotyped plate may be cast; or, if deemed advisable, it may be used as the immediate means of printing. In the one case we should produce a table, printed from type, in the same manner as common letter-press printing; in the other an engraved table. If it be thought most advisable to print from the stereotyped plates, then as many stereotyped plates as may be required may be taken from the copper mould; so that when once a table has been calculated and engraved by the machinery, the whole world may be supplied with stereotyped plates to print it, and may continue to be so supplied for an unlimited period of time. There is no practical limit to the number of stereotyped plates which may be taken from the engraved copper; and there is scarcely any limit to the number of printed copies which may be taken from any single stereotyped plate. Not only, therefore, is the numerical table by these means engraved and stereotyped with infallible accuracy, but such stereotyped plates are producible in unbounded quantity. Each plate, when produced, becomes itself the means of producing printed copies of the table, in accuracy perfect, and in number without limit.Unlike all other machinery, the calculating mechanism produces, not the object of consumption, but the machinery by which that object may be made. To say that it computes and prints with infallible accuracy, is to understate its merits:—it computes and fabricatesthe meansof printing with absolute correctness and in unlimited abundance.For the sake of clearness, and to render ourselves more easily intelligible to the general reader, we have in the preceding explanation thrown the mechanism into an arrangement somewhat different from that which is really adopted. The dials expressing the numbers of the tables of the successive differences are not placed, as we have supposed them, in horizontal rows, and read from right to left, in the ordinary way; they are, on the contrary, placed vertically, one below the other, and read from top to bottom. The number of the table occupies the first vertical column on the right, the units being expressed on the lowest dial, and the tens on the next above that, and so on. The first difference occupies the next vertical column on the left; and the numbers of the succeeding differences occupy vertical columns, proceeding regularly to the left; the constant difference being on the last vertical column. It is intended in the machine now in progress to introduce six orders of differences, so that there will be seven columns of dials; it is also intended that the calculations shall extend to eighteen places of figures: thus each column will have eighteen dials. We have referred to the dials as if they were inscribed upon the faces of wheels, whose axes are horizontal and planes vertical. In the actual machinery the axes are vertical and the planes horizontal, so that the edges of thefigure wheels, as they are called, are presented to the eye. The figures are inscribed, not upon the dial-plate, but around the surface of a small cylinder or barrel, placed upon the axis of the figure wheel, which revolves with it; so that as the figure wheel revolves, the figures on the barrel are successively brought to the front, and pass under an index engraved upon a plate of metal immediately above the barrel. This arrangement has the obvious practical advantage, that, instead of each figure wheel having a separate axis, all the figure wheels of the same vertical column revolve on the same axis; and the same observation will apply to all the wheels with which the figure wheels are in mechanical connexion. This arrangement has the further mechanical advantage over that which has been assumed for the purposes of explanation, that the friction of the wheel-work on the axes is less in amount, and more uniformly distributed, than it could be if the axes were placed in the horizontal position.A notion may therefore be formed of the front elevation of the calculating part of the mechanism, by conceiving seven steel axes erected, one beside another, on each of which shall be placed eighteen wheels,[12]five inches in diameter, having cylinders or barrels upon them an inch and a half in height, and inscribed, as already stated, with the ten arithmetical characters. The entire elevation of the machinery would occupy a space measuring ten feet broad, ten feet high, and five feet deep. The process of calculation would be observed by the alternate motion of the figure wheels on the several axes. During the first quarter of a turn, the wheels on the first, third, and fifth axes would turn, receiving their addition from the second, fourth, and sixth; during the second quarter of a turn, such of the wheels on the first, third, and fifth axes, to which carriages are due, would be moved forward one additional figure; the second, fourth, and sixth columns of wheels being all this time quiescent. During the third quarter of a turn, the second, fourth, and sixth columns would be observed to move, receiving their additions from the third, fifth, and seventh axes; and during the fourth quarter of a turn, such of these wheels to which carriages are due, would be observed to move forward one additional figure; the wheels of the first, third, and fifth columns being quiescent during this time.

[11]Recueil des Tables Logarithmiques et Trigonometriques. Par J. C. Schulze. 2 vols. Berlin: 1778.

[11]Recueil des Tables Logarithmiques et Trigonometriques. Par J. C. Schulze. 2 vols. Berlin: 1778.

At the time when the calculation and publication of Taylor's Logarithms were undertaken, it so happened that a similar work was in progress in France; and it was not until the calculation of the French work was completed, that its author was informed of the publication of the English work. This circumstance caused the French calculator to relinquish the publication of his tables. The manuscript subsequently passed into the library of Delambre, and, after his death, was purchased at the sale of his books, by Mr Babbage, in whose possession it now is. Some years ago it was thought advisable to compare these manuscript tables with Taylor's Logarithms, with a view to ascertain the errors in each, but especially in Taylor. The two works were peculiarly well suited for the attainment of this end; as the circumstances under which they were produced, rendered it quite certain that they were computed independently of each other. The comparison was conducted under the direction of the late Dr Young, and the result was the detection of the following nineteen errors in Taylor's Logarithms. To enable those who used Taylor's Logarithms to make the necessary corrections in them, the corrections of the detected errors appeared as follows in the Nautical Almanac for 1832.

ERRATA,detected inTaylor'sLogarithms.London: 4to, 1792.

An error being detected in this list of ERRATA, we find, in the Nautical Almanac for the year 1833, the following ERRATUM of the ERRATA of Taylor's Logarithms:—

'In the list of ERRATA detected in Taylor's Logarithms, forcos. 4° 18' 3", read cos. 14° 18' 2".'

Here, however, confusion is worse confounded; for a new error, not before existing, and of much greater magnitude, is introduced! It will be necessary, in the Nautical Almanac for 1836, (that for 1835 is already published,) to introduce the following:

ERRATUM of the ERRATUM of the ERRATA of TAYLOR'sLogarithms. For cos. 4° 18' 3",readcos. 14° 18' 3".

If proof were wanted to establish incontrovertibly the utter impracticability of precluding numerical errors in works of this nature, we should find it in this succession of error upon error, produced, in spite of the universally acknowledged accuracy and assiduity of the persons at present employed in the construction and management of the Nautical Almanac. It is only by themechanical fabrication of tablesthat such errors can be rendered impossible.

On examining this list with attention, we have been particularly struck with the circumstances in which these errors appear to have originated. It is a remarkable fact, that of the above nineteen errors, eighteen have arisen from mistakes incarrying. Errors 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, have arisen from a carriage being neglected; and errors 1, 3, 4, 6, 8, 9, and 18, from a carriage being made where none should take place. In four cases, namely, errors 8, 9, 10, and 16, this has causedtwofigures to be wrong. The only error of the nineteen which appears to have been a press error is the second; which has evidently arisen from the type 9 being accidentally inverted, and thus becoming a 6. This may have originated with the compositor, but more probably it took place in the press-work; the type 9 being accidentally drawn out of the form by the inking-ball, as mentioned in a former case, and on being restored to its place, inverted by the pressman.

There are two cases among the above errata, in which an error, committed in the calculation of one number, has evidently been the cause of other errors. In the third erratum, a wrong carriage was made, in computing the sine of 4° 23' 38". The next number of the table was vitiated by this error; for we find the next erratum to be in the sine of 4° 23' 39", in which the figure similarly placed is 1 in excess. A still more extensive effect of this kind appears in errata 11, 12, 13, 14, 15, 16. A carriage was neglected in computing the sine of 25° 5' 4", and this produced a corresponding error in the five following numbers of the table, which are those corrected in the five following errata.

This frequency of errors arising in the process of carrying, would afford a curious subject of metaphysical speculation respecting the operation of the faculty of memory. In the arithmetical process, the memory is employed in a twofold way;—in ascertaining each successive figure of the calculated result by the recollection of a table committed to memory at an early period of life; and by another act of memory, in which the number carried from column to column is retained. It is a curious fact, that this latter circumstance, occurring only the moment before, and being in its nature little complex, is so much more liable to be forgotten or mistaken than the results of rather complicated tables. It appears, that among the above errata, the errors 5, 7, 10, 11, 17, 19, have been produced by the computer forgetting a carriage; while the errors 1, 3, 6, 8, 9, 18, have been produced by his making a carriage improperly. Thus, so far as the above list of errata affords grounds for judging, it would seem, (contrary to what might be expected,) that the error by which improper carriages are made is as frequent as that by which necessary carriages are overlooked.

We trust that we have succeeded in proving, first, the great national and universal utility of numerical tables, by showing the vast number of them, which have been calculated and published; secondly, that more effectual means are necessary to obtain such tables suitable to the present state of the arts, sciences and commerce, by showing that the existing supply of tables, vast as it certainly is, is still scanty, and utterly inadequate to the demands of the community;—that it is rendered inefficient, not only in quantity, but in quality, by its want of numerical correctness; and that such numerical correctness is altogether unattainable until some more perfect method be discovered, not only of calculating the numerical results, but of tabulating these,—of reducing such tallies to type, and of printing that type so as to intercept the possibility of error during the press-work. Such are the ends which are proposed to be attained by the calculating machinery invented by Mr Babbage.

The benefits to be derived from this invention cannot be more strongly expressed than they have been by Mr Colebrooke, President of the Astronomical Society, on the occasion of presenting the gold medal voted by that body to Mr Babbage:—'In no department of science, or of the arts, does this discovery promise to be so eminently useful as in that of astronomy, and its kindred sciences, with the various arts dependent on them. In none are computations more operose than those which astronomy in particular requires;—in none are preparatory facilities more needful;—in none is error more detrimental. The practical astronomer is interrupted in his pursuit, and diverted from his task of observation by the irksome labours of computation, or his diligence in observing becomes ineffectual for want of yet greater industry of calculation. Let the aid which tables previously computed afford, be furnished to the utmost extent which mechanism has made attainable through Mr Babbage's invention, and the most irksome portion of the astronomer's task is alleviated, and a fresh impulse is given to astronomical research.'

The first step in the progress of this singular invention was the discovery of some common principle which pervaded numerical tables of every description; so that by the adoption of such a principle as the basis of the machinery, a corresponding degree of generality would be conferred upon its calculations. Among the properties of numerical functions, several of a general nature exist; and it was a matter of no ordinary difficulty, and requiring no common skill, to select one which might, in all respects, be preferable to the others. Whether or not that which was selected by Mr Babbage affords the greatest practical advantages, would be extremely difficult to decide—perhaps impossible, unless some other projector could be found possessed of sufficient genius, and sustained by sufficient energy of mind and character, to attempt the invention of calculating machinery on other principles. The principle selected by Mr Babbage as the basis of that part of the machinery which calculates, is the Method of Differences; and he has in fact literally thrown this mathematical principle into wheel-work. In order to form a notion of the nature of the machinery, it will be necessary, first to convey to the reader some idea of the mathematical principle just alluded to.

A numerical table, of whatever kind, is a series of numbers which possess some common character, and which proceed increasing or decreasing according to some general law. Supposing such a series continually to increase, let us imagine each number in it to be subtracted from that which follows it, and the remainders thus successively obtained to be ranged beside the first, so as to form another table: these numbers are called thefirst differences. If we suppose these likewise to increase continually, we may obtain a third table from them by a like process, subtracting each number from the succeeding one: this series is called thesecond differences. By adopting a like method of proceeding, another series may be obtained, called thethird differences; and so on. By continuing this process, we shall at length obtain a series of differences, of some order, more or less high, according to the nature of the original table, in which we shall find the same number constantly repeated, to whatever extent the original table may have been continued; so that if the next series of differences had been obtained in the same manner as the preceding ones, every term of it would be 0. In some cases this would continue to whatever extent the original table might be carried; but in all cases a series of differences would be obtained, which would continue constant for a very long succession of terms.

As the successive serieses of differences are derived from the original table, and from each other, bysubtraction, the same succession of series may be reproduced in the other direction byaddition. But let us suppose that the first number of the original table, and of each of the series of differences, including the last, be given: all the numbers of each of the series may thence be obtained by the mere process of addition. The second term of the original table will be obtained by adding to the first the first term of the first difference series; in like manner, the second term of the first difference series will be obtained by adding to the first term, the first term of the third difference series, and so on. The second terms of all the serieses being thus obtained, the third terms may be obtained by a like process of addition; and so the series may be continued. These observations will perhaps be rendered more clearly intelligible when illustrated by a numerical example. The following is the commencement of a series of the fourth powers of the natural numbers:—

By subtracting each number from the succeeding one in this series, we obtain the following series of first differences:

15651753696711105169524653439464160957825

In like manner, subtracting each term of this series from the succeeding one, we obtain the following series of second differences:—

50110194302434590770974120214541730

Proceeding with this series in the same way, we obtain the following series of third differences:—

6084108132156180204228252276

Proceeding in the same way with these, we obtain the following for the series of fourth differences:—

242424242424242424

It appears, therefore, that in this case the series of fourth differences consists of a constant repetition of the number 24. Now, a slight consideration of the succession of arithmetical operations by which we have obtained this result, will show, that by reversing the process, we could obtain the table of fourth powers by the mere process of addition. Beginning with the first numbers in each successive series of differences, and designating the table and the successive differences by the letters T, D1D2D3D4, we have then the following to begin with:—

Adding each number to the number on its left, and repeating 24, we get the following as the second terms of the several series:—

And, in the same manner, the third and succeeding terms as follows:—

There are numerous tables in which, as already stated, to whatever order of differences we may proceed, we should not obtain a series of rigorously constant differences; but we should always obtain a certain number of differences which to a given number of decimal places would remain constant for a long succession of terms. It is plain that such a table might be calculated by addition in the same manner as those which have a difference rigorously and continuously constant; and if at every point where the last difference requires an increase, that increase be given to it, the same principle of addition may again be applied for a like succession of terms, and so on.

By this principle it appears, that all tables in which each series of differences continually increases, may be produced by the operation of addition alone; provided the first terms of the table, and of each series of differences, be given in the first instance. But it sometimes happens, that while the table continually increases, one or more serieses of differences may continually diminish. In this case, the series of differences are found by subtracting each term of the series, not from that which follows, but from that which precedes it; and consequently, in the re-production of the several serieses, when their first terms are given, it will be necessary in some cases to obtain them byaddition, and in others bysubtraction. It is possible, however, still to perform all the operations by addition alone: this is effected in performing the operation of subtraction, by substituting for the subtrahend itsarithmetical complement, and adding that, omitting the unit of the highest order in the result. This process, and its principle, will be readily comprehended by an example. Let it be required to subtract 357 from 768.

The common process would be as follows:—

Thearithmetical complementof 357, or the number by which it falls short of 1000, is 643. Now, if this number be added to 768, and the first figure on the left be struck out of the sum, the process will be as follows:—

The principle on which this process is founded is easily explained. In the latter process we have first added 643, and then subtracted 1000. On the whole, therefore, we have subtracted 357, since the number actually subtracted exceeds the number previously added by that amount.

Since, therefore, subtraction may be effected in this manner by addition, it follows that the calculation of all serieses, so far as an order of differences can be found in them which continues constant, may be conducted by the process of addition alone.

It also appears from what has been stated, that each addition consists only of two operations. However numerous the figures may be of which the several pairs of numbers to be thus added may consist, it is obvious that the operation of adding them can only consist of repetitions of the process of adding one digit to another; and of carrying one from the column of inferior units to the column of units next superior when necessary. If we would therefore reduce such a process to machinery, it would only be necessary to discover such a combination of moving parts as are capable of performing these two processes ofaddingandcarryingon two single figures; for, this being once accomplished, the process of adding two numbers, consisting of any number of digits, will be effected by repeating the same mechanism as often as there are pairs of digits to be added. Such was the simple form to which Mr Babbage reduced the problem of discovering the calculating machinery; and we shall now proceed to convey some notion of the manner in which he solved it.

For the sake of illustration, we shall suppose that the table to be calculated shall consist of numbers not exceeding six places of figures; and we shall also suppose that the difference of the fifth order is the constant difference. Imagine, then, six rows of wheels, each wheel carrying upon it a dial-plate like that of a common clock, but consisting ofteninstead oftwelvedivisions; the several divisions being marked 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Let these dials be supposed to revolve whenever the wheels to which they are attached are put in motion, and to turn in such a direction that the series of increasing numbers shall pass under the index which appears over each dial:—thus, after 0 passes the index, 1 follows, then 2, 3, and so on, as the dial revolves. In Fig. 1 are represented six horizontal rows of such dials.

fig01Fig. 1.

Fig. 1.

Fig. 1.

The method of differences, as already explained, requires, that in proceeding with the calculation, this apparatus should perform continually the addition of the number expressed upon each row of dials, to the number expressed upon the row immediately above it. Now, we shall first explain how this process of addition may be conceived to be performed by the motion of the dials; and in doing so, we shall consider separately the processes of addition and carriage, considering the addition first, and then the carriage.

Let us first suppose the line D1to be added to the line T. To accomplish this, let us imagine that while the dials on the line D1are quiescent, the dials on the line T are put in motion, in such a manner, that as many divisions on each dial shall pass under its index, as there are units in the number at the index immediately below it. It is evident that this condition supposes, that if 0 be at any index on the line D1, the dial immediately above it in the line T shall not move. Now the motion here supposed, would bring under the indices on the line T such a number as would be produced by adding the number D1to T, neglecting all the carriages; for a carriage should have taken place in every case in which the figure 9 of any dial in the line T had passed under the index during the adding motion. To accomplish this carriage, it would be necessary that the dial immediately on the left of any dial in which 9 passes under the index, should be advanced one division, independently of those divisions which it may have been advanced by the addition of the number immediately below it. This effect may be conceived to take place in either of two ways. It may be either produced at the moment when the division between 9 and 0 of any dial passes under the index; in which case the process of carrying would go on simultaneously with the process of adding; or the process of carrying may be postponed in every instance until the process of addition, without carrying, has been completed; and then by another distinct and independent motion of the machinery, a carriage may be made by advancing one division all those dials on the right of which a dial had, during the previous addition, passed from 9 to 0 under the index. The latter is the method adopted in the calculating machinery, in order to enable its inventor to construct the carrying machinery independent of the adding mechanism.

Having explained the motion of the dials by which the addition, excluding the carriages of the number on the row D1, may be made to the number on the row T, the same explanation may be applied to the number on the row D2to the number on the row D1; also, of the number3to the number on the row2, and so on. Now it is possible to suppose the additions of all the rows, except the first, to be made to all the rows except the last, simultaneously; and after these additions have been made, to conceive all the requisite carriages to be also made by advancing the proper dials one division forward. This would suppose all the dials in the scheme to receive their adding motion together; and, this being accomplished, the requisite dials to receive their carrying motions together. The production of so great a number of simultaneous motions throughout any machinery, would be attended with great mechanical difficulties, if indeed it be practicable. In the calculating machinery it is not attempted. The additions are performed in two successive periods of time, and the carriages in two other periods of time, in the following manner. We shall suppose one complete revolution of the axis which moves the machinery, to make one complete set of additions and carriages; it will then make them in the following order:—

The first quarter of a turn of the axis will add the second, fourth, and sixth rows to the first, third, and fifth, omitting the carriages; this it will do by causing the dials on the first, third, and fifth rows, to turn through as many divisions as are expressed by the numbers at the indices below them, as already explained.

The second quarter of a turn will cause the carriages consequent on the previous addition, to be made by moving forward the proper dials one division.

(During these two quarters of a turn, the dials of the first, third, and fifth row alone have been moved; those of the second, fourth, and sixth, have been quiescent.)

The third quarter of a turn will produce the addition of the third and fifth rows to the second and fourth, omitting the carriages; which it will do by causing the dials of the second and fourth rows to turn through as many divisions as are expressed by the numbers at the indices immediately below them.

The fourth and last quarter of a turn will cause the carriages consequent on the previous addition, to be made by moving the proper dials forward one division.

This evidently completes one calculation, since all the rows except the first have been respectively added to all the rows except the last.

To illustrate this: let us suppose the table to be computed to be that of the fifth powers of the natural numbers, and the computation to have already proceeded so far as the fifth power of 6, which is 7776. This number appears, accordingly, in the highest row, being the place appropriated to the number of the table to be calculated. The several differences as far as the fifth, which is in this case constant, are exhibited on the successive rows of dials in such a manner, as to be adapted to the process of addition by alternate rows, in the manner already explained. The process of addition will commence by the motion of the dials in the first, third, and fifth rows, in the following manner: The dial A,fig. 1, must turn through one division, which will bring the number 7 to the index; the dial B must turn through three divisions, which will 0 bring to the index; this will render a carriage necessary, but that carriage will not take place during the present motion of the dial. The dial C will remain unmoved, since 0 is at the index below it; the dial D must turn through nine divisions; and as, in doing so, the division between 9 and 0 must pass under the index, a carriage must subsequently take place upon the dial to the left; the remaining dials of the row T,fig. 1, will remain unmoved. In the row D2the dial A2will remain unmoved, since 0 is at the index below it; the dial B2will be moved through five divisions, and will render a subsequent carriage on the dial to the left necessary; the dial C2will be moved through five divisions; the dial D2will be moved through three divisions, and the remaining dials of this row will remain unmoved. The dials of the row D4will be moved according to the same rules; and the whole scheme will undergo a change exhibited infig. 2; a mark (*) being introduced on those dials to which a carriage is rendered necessary by the addition which has just taken place.

fig02Fig. 2.

Fig. 2.

Fig. 2.

The second quarter of a turn of the moving axis, will move forward through one division all the dials which infig. 2are marked (*), and the scheme will be converted into the scheme expressed infig. 3.

fig03Fig. 3.

Fig. 3.

Fig. 3.

In the third quarter of a turn, the dial A1,fig. 3, will remain unmoved, since 0 is at the index below it; the dial B1will be moved forward through three divisions; C1through nine divisions, and so on; and in like manner the dials of the row D3will be moved forward through the number of divisions expressed at the indices in the row D4. This change will convert the arrangement into that expressed infig. 4, the dials to which a carriage is due, being distinguished as before by (*).

fig04Fig. 4.

Fig. 4.

Fig. 4.

The fourth quarter of a turn of the axis will move forward one division all the dials marked (*); and the arrangement will finally assume the form exhibited infig. 5, in which the calculation is completed. The first row T in this expresses the fifth power of 7; and the second expresses the number which must be added to the first row, in order to produce the fifth power of 8; the numbers in each row being prepared for the change which they must undergo, in order to enable them to continue the computation according to the method of alternate addition here adopted.

fig05Fig. 5.

Fig. 5.

Fig. 5.

Having thus explained what it is that the mechanism is required to do, we shall now attempt to convey at least a general notion of some of the mechanical contrivances by which the desired ends are attained. To simplify the explanation, let us first take one particular instance—the dials B and B1,fig. 1, for example. Behind the dial B1is a bolt, which, at the commencement of the process, is shot between the teeth of a wheel which drives the dial B: during the first quarter of a turn this bolt is made to revolve, and if it continued to be engaged in the teeth of the said wheel, it would cause the dial B to make a complete revolution; but it is necessary that the dial B should only move through three divisions, and, therefore, when three divisions of this dial have passed under its index, the aforesaid bolt must be withdrawn: this is accomplished by a small wedge, which is placed in a fixed position on the wheel behind the dial B1, and that position is such that this wedge will press upon the bolt in such a manner, that at the moment when three divisions of the dial B have passed under the index, it shall withdraw the bolt from the teeth of the wheel which it drives. The bolt will continue to revolve during the remainder of the first quarter of a turn of the axis, but it will no longer drive the dial B, which will remain quiescent. Had the figure at the index of the dial B1been any other, the wedge which withdraws the bolt would have assumed a different position, and would have withdrawn the bolt at a different time, but at a time always corresponding with the number under the index of the dial B1: thus, if 5 had been under the index of the dial B1, then the bolt would have been withdrawn from between the teeth of the wheel which it drives, when five divisions of the dial B had passed under the index, and so on. Behind each dial in the row D1there is a similar bolt and a similar withdrawing wedge, and the action upon the dial above is transmitted and suspended in precisely the same manner. Like observations will be applicable to all the dials in the scheme here referred to, in reference to their adding actions upon those above them.

There is, however, a particular case which here merits notice: it is the case in which 0 is under the index of the dial from which the addition is to be transmitted upwards. As in that case nothing is to be added, a mechanical provision should be made to prevent the bolt from engaging in the teeth of the wheel which acts upon the dial above: the wedge which causes the bolt to be withdrawn, is thrown into such a position as to render it impossible that the bolt should be shot, or that it should enter between the teeth of the wheel, which in other cases it drives. But inasmuch as the usual means of shooting the bolt would still act, a strain would necessarily take place in the parts of the mechanism, owing to the bolt not yielding to the usual impulse. A small shoulder is therefore provided, which puts aside, in this case, the piece by which the bolt is usually struck, and allows the striking implement to pass without encountering the head of the bolt or any other obstruction. This mechanism is brought into play in the scheme,fig. 1, in the cases of all those dials in which 0 is under the index.

Such is a general description of the nature of the mechanism by which the adding process, apart from the carriages, is effected. During the first quarter of a turn, the bolts which drive the dials in the first, third, and fifth rows, are caused to revolve, and to act upon these dials, so long as they are permitted by the position of the several wedges on the second, fourth, and sixth rows of dials, by which these bolts are respectively withdrawn; and, during the third quarter of a turn, the bolts which drive the dials of the second and fourth rows are made to revolve and act upon these dials so long as the wedges on the dials of the third and fifth rows, which withdraw them, permit. It will hence be perceived, that, during the first and third quarters of a turn, the process of addition is continually passing upwards through the machinery; alternately from the even to the odd rows, and from the odd to the even rows, counting downwards.

We shall now attempt to convey some notion of the mechanism by which the process of carrying is effected during the second and fourth quarters of a turn of the axis. As before, we shall first explain it in reference to a particular instance. During the first quarter of a turn the wheel B2,fig. 1, is caused by the adding bolt to move through five divisions; and the fifth of these divisions, which passes under the index, is that between 9 and 0. On the axis of the wheel C2, immediately to the left of B2, is fixed a wheel, called in mechanics a ratchet wheel, which is driven by a claw which constantly rests in its teeth. This claw is in such a position as to permit the wheel C2to move in obedience to the action of the adding bolt, but to resist its motion in the contrary direction. It is drawn back by a spiral spring, but its recoil is prevented by a hook which sustains it; which hook, however, is capable of being withdrawn, and when withdrawn, the aforesaid spiral spring would draw back the claw, and make it fall through one tooth of the ratchet wheel. Now, at the moment that the division between 9 and 0 on the dial B2passes under the index, a thumb placed on the axis of this dial touches a trigger which raises out of the notch the hook which sustains the claw just mentioned, and allows it to fall back by the recoil of the spring, and to drop into the next tooth of the ratchet wheel. This process, however, produces no immediate effect upon the position of the wheel C2, and is merely preparatory to an action intended to take place during the second quarter of a turn of the moving axis. It is in effect a memorandum taken by the machine of a carriage to be made in the next quarter of a turn.

During the second quarter of a turn, a finger placed on the axis of the dial B2is made to revolve, and it encounters the heel of the above-mentioned claw. As it moves forward it drives the claw before it: and this claw, resting in the teeth of the ratchet wheel fixed upon the axis of the dial C2drives forward that wheel, and with it the dial. But the length and position of the finger which drives the claw limits its action, so as to move the claw forward through such a space only as will cause the dial C2to advance through a single division; at which point it is again caught and retained by the hook. This will be added to the number under its index, and the requisite carriage from B2to C2will be accomplished.

In connexion with every dial is placed a similar ratchet wheel with a similar claw, drawn by a similar spring, sustained by a similar hook, and acted upon by a similar thumb and trigger; and therefore the necessary carriages, throughout the whole machinery, take place in the same manner and by similar means.

During the second quarter of a turn, such of the carrying claws as have been allowed to recoil in the first, third, and fifth rows, are drawn up by the fingers on the axes of the adjacent dials; and, during the fourth quarter of a turn, such of the carrying claws on the second and fourth rows as have been allowed to recoil during the third quarter of a turn, are in like manner drawn up by the carrying fingers on the axes of the adjacent dials. It appears that the carriages proceed alternately from right to left along the horizontal rows during the second and fourth quarters of a turn; in the one, they pass along the first, third, and fifth rows, and in the other, along the second and fourth.

There are two systems of waves of mechanical action continually flowing from the bottom to the top; and two streams of similar action constantly passing from the right to the left. The crests of the first system of adding waves fall upon the last difference, and upon every alternate one proceeding upwards; while the crests of the other system touch upon the intermediate differences. The first stream of carrying action passes from right to left along the highest row and every alternate row, while the second stream passes along the intermediate rows.

Such is a very rapid and general outline of this machinery. Its wonders, however, are still greater in its details than even in its broader features. Although we despair of doing it justice by any description which can be attempted here, yet we should not fulfil the duty we owe to our readers, if we did not call their attention at least to a few of the instances of consummate skill which are scattered, with a prodigality characteristic of the highest order of inventive genius, throughout this astonishing mechanism.

In the general description which we have given of the mechanism forcarrying, it will be observed, that the preparation for every carriage is stated to be made during the previous addition, by the disengagement of the carrying claw before mentioned, and by its consequent recoil, urged by the spiral spring with which it is connected; but it may, and does, frequently happen, that though the process of addition may not have rendered a carriage necessary, one carriage may itself produce the necessity for another. This is a contingency not provided against in the mechanism as we have described it: the case would occur in the scheme represented infig. 1, if the figure under the index of C2were 4 instead of 3. The addition of the number 5 at the index of C3would, in this case, in the first quarter of a turn, bring 9 to the index of C2: this would obviously render no carriage necessary, and of course no preparation would be made for one by the mechanism—that is to say, the carrying claw of the wheel D2would not be detached. Meanwhile a carriage upon C2has been rendered necessary by the addition made in the first quarter of a turn to B2. This carriage takes place in the ordinary way, and would cause the dial C2, in the second quarter of a turn, to advance from 9 to 0: this would make the necessary preparation for a carriage from C2to D2. But unless some special arrangement was made for the purpose, that carriage would not take place during the second quarter of a turn. This peculiar contingency is provided against by an arrangement of singular mechanical beauty, and which, at the same time, answers another purpose—that of equalizing the resistance opposed to the moving power by the carrying mechanism. The fingers placed on the axes of the several dials in the row D2, do not act at the same instant on the carrying claws adjacent to them; but they are so placed, that their action may be distributed throughout the second quarter of a turn in regular succession. Thus the finger on the axis of the dial A2first encounters the claw upon B2, and drives it through one tooth immediately forwards; the finger on the axis of B2encounters the claw upon C2and drives it through one tooth; the action of the finger on C2on the claw on D2next succeeds, and so on. Thus, while the finger on B2acts on C2, and causes the division from 9 to 0 to pass under the index, the thumb on C2at the same instant acts on the trigger, and detaches the carrying claw on D2, which is forthwith encountered by the carrying finger on C2, and driven forward one tooth. The dial D2accordingly moves forward one division, and 5 is brought under the index. This arrangement is beautifully effected by placing the several fingers, which act upon the carrying claws,spirallyon their axes, so that they come into action in regular succession.

We have stated that, at the commencement of each revolution of the moving axis, the bolts which drive the dials of the first, third, and fifth rows, are shot. The process of shooting these bolts must therefore have taken place during the last quarter of the preceding revolution; but it is during that quarter of a turn that the carriages are effected in the second and fourth rows. Since the bolts which drive the dials of the first, third, and fifth rows, have no mechanical connexion with the dials in the second and fourth rows, there is nothing in the process of shooting those bolts incompatible with that of moving the dials of the second and fourth rows: hence these two processes may both take place during the same quarter of a turn. But in order to equalize the resistance to the moving power, the same expedient is here adopted as that already described in the process of carrying. The arms which shoot the bolts of each row of dials are arranged spirally, so as to act successively throughout the quarter of a turn. There is, however, a contingency which, under certain circumstances, would here produce a difficulty which must be provided against. It is possible, and in fact does sometimes happen, that the process of carrying causes a dial to move under the index from 0 to 1. In that case, the bolt, preparatory to the next addition, ought not to be shot until after the carriage takes place; for if the arm which shoots it passes its point of action before the carriage takes place, the bolt will be moved out of its sphere of action, and will not be shot, which, as we have already explained, must always happen when 0 is at the index: therefore no addition would in this case take place during the next quarter of a turn of the axis; whereas, since 1 is brought to the index by the carriage, which immediately succeeds the passage of the arm which ought to bolt, 1 should be added during the next quarter of a turn. It is plain, accordingly, that the mechanism should be so arranged, that the action of the arms, which shoot the bolts successively, should immediately follow the action of those fingers which raise the carrying claws successively; and therefore either a separate quarter of a turn should be appropriated to each of those movements, or if they be executed in the same quarter of a turn, the mechanism must be so constructed, that the arms which shoot the bolts successively, shall severally follow immediately after those which raise the carrying claws successively. The latter object is attained by a mechanical arrangement of singular felicity, and partaking of that elegance which characterises all the details of this mechanism. Both sets of arms are spirally arranged on their respective axes, so as to be carried through their period in the same quarter of a turn; but the one spiral is shifted a few degrees, in angular position, behind the other, so that each pair of corresponding arms succeed each other in the most regular order,—equalizing the resistance, economizing time, harmonizing the mechanism, and giving to the whole mechanical action the utmost practical perfection.

The system of mechanical contrivances by which the results, here attempted to be described, are attained, form only one order of expedients adopted in this machinery;—although such is the perfection of their action, that in any ordinary case they would be regarded as having attained the ends in view with an almost superfluous degree of precision. Considering, however, the immense importance of the purposes which the mechanism was destined to fulfil, its inventor determined that a higher order of expedients should be superinduced upon those already described; the purpose of which should be to obliterate all small errors or inequalities which might, even by remote possibility, arise, either from defects in the original formation of the mechanism, from inequality of wear, from casual strain or derangement,—or, in short, from any other cause whatever. Thus the movements of the first and principal parts of the mechanism were regarded by him merely as a first, though extremely nice approximation, upon which a system of small corrections was to be subsequently made by suitable and independent mechanism. This supplementary system of mechanism is so contrived, that if one or more of the moving parts of the mechanism of the first order be slightly out of their places, they will be forced to their exact position by the action of the mechanical expedients of the second order to which we now allude. If a more considerable derangement were produced by any accidental disturbance, the consequence would be that the supplementary mechanism would cause the whole system to become locked, so that not a wheel would be capable of moving; the impelling power would necessarily lose all its energy, and the machine would stop. The consequence of this exquisite arrangement is, that the machine will either calculate rightly, or not at all.

The supernumerary contrivances which we now allude to, being in a great degree unconnected with each other, and scattered through the machinery to a certain extent, independent of the mechanical arrangement of the principal parts, we find it difficult to convey any distinct notion of their nature or form.

In some instances they consist of a roller resting between certain curved surfaces, which has but one position of stable equilibrium, and that position the same, however the roller or the curved surfaces may wear. A slight error in the motion of the principal parts would make this roller for the moment rest on one of the curves; but, being constantly urged by a spring, it would press on the curved surface in such a manner as to force the moving piece on which that curved surface is formed, into such a position that the roller may rest between the two surfaces; that position being the one which the mechanism should have. A greater derangement would bring the roller to the crest of the curve, on which it would rest in instable equilibrium; and the machine would either become locked, or the roller would throw it as before into its true position.

In other instances a similar object is attained by a solid cone being pressed into a conical seat; the position of the axis of the cone and that of its seat being necessarily invariable, however the cone may wear: and the action of the cone upon the seat being such, that it cannot rest in any position except that in which the axis of the cone coincides with the axis of its seat.

Having thus attempted to convey a notion, however inadequate, of the calculating section of the machinery, we shall proceed to offer some explanation of the means whereby it is enabled, to print its calculations in such a manner as to preclude the possibility of error in any individual printed copy.

On the axle of each of the wheels which express the calculated number of the table T, there is fixed a solid piece of metal, formed into a curve, not unlike the wheel in a common clock, which is called thesnail. This curved surface acts against the arm of a lever, so as to raise that arm to a higher or lower point according to the position of the dial with which the snail is connected. Without entering into a more minute description, it will be easily understood that the snail may be so formed that the arm of the lever shall be raised to ten different elevations, corresponding to the ten figures of the dial which may be brought under the index. The opposite arm of the lever here described puts in motion a solid arch, or sector, which carries ten punches: each punch bearing on its face a raised character of a figure, and the ten punches bearing the ten characters, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. It will be apparent from what has been just stated, that thistype sector(as it is called) will receive ten different attitudes, corresponding to the ten figures which may successively be brought under the index of the dial-plate. At a point over which the type sector is thus moved, and immediately under a point through which it plays, is placed a frame, in which is fixed a plate of copper. Immediately over a certain point through which the type sector moves, is likewise placed abent lever, which, being straightened, is forcibly pressed upon the punch which has been brought under it. If the type sector be moved, so as to bring under the bent lever one of the steel punches above mentioned, and be held in that position for a certain time, the bent lever, being straightened, acts upon the steel punch, and drives it against the face of the copper beneath, and thus causes a sunken impression of the character upon the punch to be left upon the copper. If the copper be now shifted slightly in its position, and the type sector be also shifted so as to bring another punch under the bent lever, another character may be engraved on the copper by straightening the bent lever, and pressing it on the punch as before. It will be evident, that if the copper was shifted from right to left through a space equal to two figures of a number, and, at the same time, the type sector so shifted as to bring the punches corresponding to the figures of the number successively under the bent lever, an engraved impression of the number might thus be obtained upon the copper by the continued action of the bent lever. If, when one line of figures is thus obtained, a provision be made to shift the copper in a direction at right angles to its former motion, through a space equal to the distance between two lines of figures, and at the same time to shift it through a space in the other direction equal to the length of an entire line, it will be evident that another line of figures might be printed below the first in the same manner.

The motion of the type sector, here described, is accomplished by the action of the snail upon the lever already mentioned. In the case where the number calculated is that expressed infig. 1, the process would be as follows:—The snail of the wheel F1, acting upon the lever, would throw the type sector into such an attitude, that the punch bearing the character 0 would come under the bent lever. The next turn of the moving axis would cause the bent lever to press on the tail of the punch, and the character 0 would be impressed upon the copper. The bent lever being again drawn up, the punch would recoil from the copper by the action of a spring; the next turn of the moving axis would shift the copper through the interval between two figures, so as to bring the point destined to be impressed with the next figure under the bent lever. At the same time, the snail of the wheel E would cause the type sector to be thrown into the same attitude as before, and the punch would be brought under the bent lever; the next turn would impress the figure beside the former one, as before described. The snail upon the wheel D would now come into action, and throw the type sector into that position in which the punch bearing the character 7 would come under the bent lever, and at the same time the copper would be shifted through the interval between two figures; the straightening of the lever would next follow, and the character 7 would be engraved. In the same manner, the wheels C, B, and A would successively act by means of their snails; and the copper being shifted, and the lever allowed to act, the number 007776 would be finally engraved upon the copper: this being accomplished, the calculating machinery would next be called into action, and another calculation would be made, producing the next number of the Table exhibited infig. 5. During this process the machinery would be engaged in shifting the copper both in the direction of its length and its breadth, with a view to commence the printing of another line; and this change of position would be accomplished at the moment when the next calculation would be completed: the printing of the next number would go on like the former, and the operation of the machine would proceed in the same manner, calculating and printing alternately. It is not, however, at all necessary—though we have here supposed it, for the sake of simplifying the explanation—that the calculating part of the mechanism should have its action suspended while the printing part is in operation, orvice versa; it is not intended, in fact, to be so suspended in the actual machinery. The same turn of the axis by which one number is printed, executes a part of the movements necessary for the succeeding calculation; so that the whole mechanism will be simultaneously and continuously in action.

Of the mechanism by which the position of the copper is shifted from figure to figure, from line to line, we shall not attempt any description. We feel that it would be quite vain. Complicated and difficult to describe as every other part of this machinery is, the mechanism for moving the copper is such as it would be quite impossible to render at all intelligible, without numerous illustrative drawings.

The engraved plate of copper obtained in the manner above described, is designed to be used as a mould from which a stereotyped plate may be cast; or, if deemed advisable, it may be used as the immediate means of printing. In the one case we should produce a table, printed from type, in the same manner as common letter-press printing; in the other an engraved table. If it be thought most advisable to print from the stereotyped plates, then as many stereotyped plates as may be required may be taken from the copper mould; so that when once a table has been calculated and engraved by the machinery, the whole world may be supplied with stereotyped plates to print it, and may continue to be so supplied for an unlimited period of time. There is no practical limit to the number of stereotyped plates which may be taken from the engraved copper; and there is scarcely any limit to the number of printed copies which may be taken from any single stereotyped plate. Not only, therefore, is the numerical table by these means engraved and stereotyped with infallible accuracy, but such stereotyped plates are producible in unbounded quantity. Each plate, when produced, becomes itself the means of producing printed copies of the table, in accuracy perfect, and in number without limit.

Unlike all other machinery, the calculating mechanism produces, not the object of consumption, but the machinery by which that object may be made. To say that it computes and prints with infallible accuracy, is to understate its merits:—it computes and fabricatesthe meansof printing with absolute correctness and in unlimited abundance.

For the sake of clearness, and to render ourselves more easily intelligible to the general reader, we have in the preceding explanation thrown the mechanism into an arrangement somewhat different from that which is really adopted. The dials expressing the numbers of the tables of the successive differences are not placed, as we have supposed them, in horizontal rows, and read from right to left, in the ordinary way; they are, on the contrary, placed vertically, one below the other, and read from top to bottom. The number of the table occupies the first vertical column on the right, the units being expressed on the lowest dial, and the tens on the next above that, and so on. The first difference occupies the next vertical column on the left; and the numbers of the succeeding differences occupy vertical columns, proceeding regularly to the left; the constant difference being on the last vertical column. It is intended in the machine now in progress to introduce six orders of differences, so that there will be seven columns of dials; it is also intended that the calculations shall extend to eighteen places of figures: thus each column will have eighteen dials. We have referred to the dials as if they were inscribed upon the faces of wheels, whose axes are horizontal and planes vertical. In the actual machinery the axes are vertical and the planes horizontal, so that the edges of thefigure wheels, as they are called, are presented to the eye. The figures are inscribed, not upon the dial-plate, but around the surface of a small cylinder or barrel, placed upon the axis of the figure wheel, which revolves with it; so that as the figure wheel revolves, the figures on the barrel are successively brought to the front, and pass under an index engraved upon a plate of metal immediately above the barrel. This arrangement has the obvious practical advantage, that, instead of each figure wheel having a separate axis, all the figure wheels of the same vertical column revolve on the same axis; and the same observation will apply to all the wheels with which the figure wheels are in mechanical connexion. This arrangement has the further mechanical advantage over that which has been assumed for the purposes of explanation, that the friction of the wheel-work on the axes is less in amount, and more uniformly distributed, than it could be if the axes were placed in the horizontal position.

A notion may therefore be formed of the front elevation of the calculating part of the mechanism, by conceiving seven steel axes erected, one beside another, on each of which shall be placed eighteen wheels,[12]five inches in diameter, having cylinders or barrels upon them an inch and a half in height, and inscribed, as already stated, with the ten arithmetical characters. The entire elevation of the machinery would occupy a space measuring ten feet broad, ten feet high, and five feet deep. The process of calculation would be observed by the alternate motion of the figure wheels on the several axes. During the first quarter of a turn, the wheels on the first, third, and fifth axes would turn, receiving their addition from the second, fourth, and sixth; during the second quarter of a turn, such of the wheels on the first, third, and fifth axes, to which carriages are due, would be moved forward one additional figure; the second, fourth, and sixth columns of wheels being all this time quiescent. During the third quarter of a turn, the second, fourth, and sixth columns would be observed to move, receiving their additions from the third, fifth, and seventh axes; and during the fourth quarter of a turn, such of these wheels to which carriages are due, would be observed to move forward one additional figure; the wheels of the first, third, and fifth columns being quiescent during this time.


Back to IndexNext