DEFINITIONXIII.
ABoundis that which is the Extremity of any thing[160].
A Bound, in this place, is not to be referred to all magnitudes, for there is a bound and extremity of a line; but to the spaces which are contained in superficies, and to solid bodies. For he now calls a bound, the ambit which terminates and distinguishes everyspace. And a bound of this kind, he defines to be an extremity: but not after the manner in which a point is called the extremity of a line, but according to its property of including and excluding from circumjacent figures. But this name is proper to geometry in its infant state, by which they measured fields, and preserved their boundaries distinct and without confusion, and from which they arrived at the knowledge of the present science. Since, therefore, Euclid calls the external ambit, a bound, it is not without propriety that he, by this means, defines the extremity of spaces. For by this, every thing comprehended is circumscribed. I say, for example, in a circle, its bound and extremity is the circumference; but itself, a certain plane space: and so of the rest.