DEFINITIONXIV.

DEFINITIONXIV.

AFigureis that which is comprehended by one or more Boundaries.

Because figure is predicated in various ways, and is divided into different species, it is requisite, in the first place, to behold its differences; and afterwards to discourse concerning that figure which is proposed in this Definition. There is, then a certain figure which is constituted by mutation, and is produced from passion, while the recipients of the figure are disturbed, divided, or taken away; while they receive additions, or are altered, or suffer other various affections. There is also a figure, which is produced by the potter’s, or statuary’s art, according to the pre-existent reason, which art itself contains: art, indeed, producing the form, but matter receiving from thence, form, and beauty, and elegance. But there are still more noble and more illustrious figures than these, the skilful operations of nature. Some, indeed, existing in the elements under the moon[161], and having a power of comprehending the reasons those elements contain: but others are situated in the celestial regions, distinguishing their powers, and endless revolutions. For the heavenly bodies, both when considered by themselves, and with relation to each other, exhibit an abundant and admirable variety of figures; and at different times they present to our view different forms, bringing with them a splendid image of intellectualspecies; and, by their elegant and harmonious revolutions, describing the incorporeal and immaterial powers of figures. But there are, again, besides all these, most pure and perfect beauties, the figures of souls, which, because they are full of life, and self-motive, have an existence prior to things moved by another; and which, because they subsist immaterially, and without any dimension, excel the forms which are endued with dimension and matter. In the nature of which we are instructed by Timæus, who has explained to us the demiurgic, and essential figure of souls[162]. But again, the figures of intellects are by far more divine than the figures of souls; for these, on every side, excel partible essences; are every where resplendent with impartible and intellectual light; are prolific, effective, and perfective of the universe; are equally present, and firmly abide in all things; and procure union to the figures of souls; but recall the mutation of sensible figures to the limitation of their proper bound. Lastly, there are, separate from all these, those perfect, uniform, unknown, and ineffable figures of the gods, which are resident, indeed, in the figures of intellects; but jointly terminate all figures, and comprehend all things in their unifying boundaries. The properties of which the theurgic art, also expressing, surrounds various resemblances of the gods, with various figures. And some, indeed, it fashions by characters, in an ineffable manner; for characters of this kind, manifest the unknown powers of the gods: but others it imitates by forms and images; fashioning some of them erect, and others fitting; and some similar to a heart, but others spherical, and others expressed by different figures. And again, some it fabricates of a simple form; but others it composes from a multitude of forms; and some are sacred and venerable; but others are domestic, exhibiting the peculiar gentleness of the gods. And some it constructs of a severe aspect; and lastly, attributes to others, different symbols, according to the similitude and sympathy pertaining to the gods[163]. Since, therefore, figure derivesits origin from the gods themselves, it arrives, by a gradual progression, even to inferiors, in these also appearing from primary causes. Since it is requisite to suppose the perfect before the imperfect, and things situated in the stability of their own essence, prior to those which subsist in others, and previous to things full of their own privation, such as preserve their proper nature sincere. Such figures, therefore, as are material, participate of material inelegance, and do not possess a purity convenient to their nature. But the celestial figures are divisible, and subsist in others. And the figures of souls are endued with division, and variety, and involution of every kind; but the figures of intellects, together with immaterial union, possess a progression into multitude. And lastly, the figures of the gods are free, uniform, simple, and generative; they subsist before all things, containing all perfection in themselves, and extending from themselves to all things, the completion of forms. We must not, therefore, listen to, and endure the opinions of many, who affirm, that certain additions, ablations, and alterations, produce sensible figures, (for motions, since they are imperfect, cannot possess the principle and primary cause of effects; nor could the same figures often be produced from contrary motions; for the same form is sometimes generated from addition and detraction,) but we must consider operations of this kind as subservient to other purposes in generation, and derive the perfectionof figure from other primogenial causes. Nor must we subscribe to their opinion, who assert that figures destitute of matter can have no subsistence; but those only which appear in matter. Nor to theirs, who acknowledge, indeed, that they are external to matter, but consider them as subsisting alone, according to thought and abstraction. For where shall we preserve in safety, the certainty, beauty, and order of figures, among things which subsist by abstraction? For, since they are of the same kind with sensibles, they are far distant from indubitable and pure certainty. But from whence do they derive the certainty, order, and perfection which they receive? For they either derive it from sensibles (but they have no subsistence in these), or from intelligibles (but in these they are more perfect), since, to say from that which is not, is the most absurd of all. For nature does not produce imperfect figures, and leave the perfect without any subsistence. Nor is it lawful, that our soul should fabricate more certain, perfect, and orderly figures, than intellect and the gods themselves. There are, therefore, prior to sensible figures, self-moving, intellectual, and divine reasons of figures. And we are excited, indeed, from the obscurity of sensible forms, but we produce internal reasons, which are the lucid images of others. And we possess a knowledge of sensible figures, by their exemplars resident in soul (παραδειγματικῶς), but we comprehend by images (εἰκονικῶς) such as are intellectual and divine. For the reasons we contain, emerging from the dark night of oblivion, and propagating themselves in sciential variety, exhibit the forms of the gods, and the uniform bounds of the universe, by which they ineffably convert all things into themselves. In the gods, therefore, there is both an egregious knowledge of universal figures, and a power of generating and constituting all inferiors. But in natures, figures are endued with a power generative of apparent forms; but are destitute of cognition and intellectual perception. And, in particular souls, there is, indeed, an immaterial intellection, and a self-energizing knowledge; but there is wanting a prolific, and efficacious cause. As, therefore, nature, by her forming power presides over sensible figures, in the same manner, soul, by her gnostic energy, drops in the phantasy as in a mirror, the reasons of figures. But the phantasy receiving these in her shadowy forms, and possessing images of theinherent reasons of the soul, affords by these the means of inward conversion to the soul, and of an energy directed to herself, from the spectres of imagination. Just as if any one beholding his image in a mirror, and admiring the power of nature, and his own beauty, should desire to see himself in perfection, and should receive a power of becoming, at the same time, the perceiver, and the thing perceived. For the soul, after this manner, looking abroad into the bright mirror of the phantasy, and surveying the shadowy figures it contains, and admiring their beauty and order, pursues, in consequence of her admiration, the reasons from which these images proceed; and being wonderfully delighted, dismisses their beauty, as conversant about spectres alone; but afterwards seeks her own purer beauty, and desires to pass into her own profound retreats, and there to perceive the circle and the triangle, and all things subsisting together, in an impartible manner, and to insert herself in the objects, to contract her multitude into one; and lastly, to behold the occult and ineffable figures of the gods, seated in the most sacred and divine recesses of her nature. She is likewise desirous of bringing into light, from its awful concealment, the solitary beauty, of the gods, and of perceiving the circle, subsisting in its true perfection, more impartible than any centre, and the triangle without interval; and lastly, by ascending into an union with herself, of surveying every object which is subject to the power of cognition. The figure, therefore, which is self-motive, precedes that which is moved by another; and the impartible that which is self-motive: but that which is the same withone, precedes the impartible itself. For all things are bounded, when they return to the unities of their nature; since all things pass through these as a divine entrance into being. And thus much for this long digression, which we have delivered according to the sentiments of the Pythagoreans. But the geometrician, contemplating that figure which is seated in the phantasy, and defining this, in the first place, (since this definition agrees with sensibles, in the second place) says, that figure is that which is comprehended by one or more boundaries. For, since he receives it together with matter, and conceives of it as distant with intervals, he does not improperly call it finite and terminated[164]. [Since every thingwhich contains either intelligible or feasible matter, is allotted an adventitious bound; and is not itself bound, but that which is bounded.] Nor is it the bound of itself; but one of its powers is terminating, and the other terminated. Nor does it subsist in bound itself, but is contained by bound. For figure is joined to quantity, and subsists together with it; and, at the same time, quantity is subjected to figure; but the reason and aspect of that quantity is nothing else than figure and form. Since, indeed, reason terminates quantity, and adds to it a particular character and bound, either simple or composite. For, since this also exhibits the twofold progression ofboundandinfinitein its proper forms, (in the same manner as the reason of an angle,) it invests the objects of its comprehension with one boundary and simple form, according tobound, but with many, according to infinity[165]. Hence, every thing figured, vindicates to itself either one boundary, or a many. Euclid, therefore, denominating that which is figured and material, and annexed to quantity figure, does not improperly say, that it is contained by one or more terms. But Possidonius defines figure to be concluding bound, separating the reason of figure from quantity; and considering it as the cause of terminating, defining, and comprehending quantity. For that which encloses, is different from that which is enclosed; and bound from that which is bounded. And Possidonius, indeed, seems to regard the external surrounding bound; but Euclid, the whole subject. Hence, the one calls a circle a figure, with relation to its whole plane, and exterior ambit; but the other with relation to its circumference only. And the one defines that which is figured, and which is beheld together with its subject: but the other desires to define the reason of the circle; I mean that which terminates and concludes its quantity. But if any logician, and captious person, should blame the definition of Euclid, because he defines genus from species (for things contained by one or more terms, are the species of figure,) we shall assert, in opposition to such an objection, that genera also pre-occupy in themselves the powers of species. And when men of ancient authority, were willing to manifest genera themselves, from those powers which genera contain, they appeared, indeed, to enter on their design from species, but, in reality, theyexplained genera from themselves, and from the powers which they contain. The reason of figure, therefore, since it is one, comprehends the differences of many figures, according to the bound and infinity residing in its nature. And he who defined this reason, was not void of understanding, whilst he comprehended in a definition, the differences of the powers it contained. But you will ask, From whence does the reason of figure originate, and by what causes is it perfected? I answer, that it first arises fromboundandinfinite, and that which is mixed from these. Hence it produces some species frombound, others frominfinite, and others from themixt. And this it accomplishes by bringing the form of bound to circles; but that of infinite, to right lines: and that of the mixt to figures composed from right and circular lines. But, in the second place, this reason is perfected from that totality, which is separated into dissimilar parts. From whence, indeed, it occasions a whole to every form, and each figure is cut into different species. For a circle, and every right-lined figure may be divided, by reason or proportion, into dissimilar figures; which is the business of Euclid in his book of divisions, where he divides one figure into figures similar to each as are given; but another into such as are dissimilar. In the third place, it is invigorated from accumulated multitude, and, on account of this, extends forms of every kind, and produces the multiform reasons of figures. Hence, in propagating itself, it does not cease till it arrives at something last, and has unfolded all the variety of forms. And, as in the intelligible world,oneis shewn to abide in that whichis; and, at the same time, that whichisinone, so likewise, reason exhibits circular in right-lined figures; and on the contrary, rectilinear comprehended in circular figures. And it peculiarly manifests its whole nature in each, and all these in all. Since the whole subsists in all collectively, and in each separate and apart. From that order, therefore, it is endued with this power. In the fourth place, it receives from the first of numbers[166], the measures of the progression of forms. From whence it constitutes all figures according to numbers; some, indeed, according to the more simple, but others according to the more composite. For triangles, quadrangles, quinquangles, and all multangles, proceed ininfinitum, together with the mutations of numbers. But the cause of this is, indeed, unknown to the vulgar, though, to those who understand where number and figure subsist, the reason is manifest. Fifthly, it is replete with that division of forms, which divides forms into other similar forms, from another second totality, which is also distributed into similar parts. And by this, a triangular reason is divided into triangles, and a quadrangular reason into quadrangles. And hence, exercising our inward powers, we effect what I have said in images, since it pre-existed by far the first in its principles. But by regarding these distributions, we may render many causes of figures, reducing them to their first principles. And the more common, or geometrical figure, is allotted an order of this kind, and from so many causes, receives the perfection of its nature. But, from hence it advances to the genera of the gods, and is variously attributed according to its various forms, and energizes differently in different gods. To some, indeed, affording more simple figures; but to others, such as are more composite. And to some, again, assigning primary figures, and those which are produced in superficies; but to others (entering the tumor of solid bodies) such figures, as in solids are convenient to themselves. For all figures, indeed, subsist in all, since the forms of the gods are accumulated, and full of universal powers: but, by their peculiarity, they produce one thing according to another. For one possesses all things circularly, another in a triangular manner, but another according to a quadrangular reason. And in a similar manner in solids.

ACircleis a Plane Figure, comprehended by one Line, which is called the Circumference, to which all Right Lines falling from a certain Point within the Figure, are equal to each other.

And that Point is called theCentreof theCircle.

A Circle is the first, most simple, and most perfect of figures. For it excels all solids, because it exists in a more simple place; but it is superior to the figures subsisting in planes, on account of itssimilitude and identity. And it has a corresponding proportion to bound, and unity, and a better co-ordination of being. Hence, in a distribution of mundane and super-mundane figures, you will always find that the circle is of a diviner nature. For if you make a division into the heavens, and the universal regions of generation, you must assign to the heavens a circular form; but to generation, that of a right line, For whatever among generable natures is circular, descends from the heavens; since generation revolves into itself, through their circumvolutions, and reduces its unstable mutation to a regular and orderly continuance. But if you distribute incorporeal natures into soul and intellect, you will say, that the circle belongs to intellect, and the right line to the soul. And on this account, the soul, by its conversion to intellect, is said to be circularly moved; and it possesses the same proportion to intellect, as generation to the heavens. For it is circularly moved, (says Socrates[167],) because it imitates intellect. But the generation and progression of soul is made according to a right-line. For it is the property, of the soul to apply herself at different times to different forms. But if you wish to divide into body and soul, you must constitute every thing corporeal, according to the right line; but you must assign to every animal a participation of the identity and similitude of the circle. For body is a composite, and is endued with various powers, similar to right-lined figures: but soul is simple and intelligent; self-motive, and self-operative; converted into, and energizing in herself. From whence, indeed, Timæus also, when he had composed the elements of the universe from right-lined figures, assigned to them a circular motion and formation, from that divine soul which is seated in the bosom of the world. And thus, that the circle every where holds the first rank, in respect of other figures, is sufficiently evident from the preceding observations. But it is requisite to survey its whole series, beginning supernally, ending in inferiors, and perfecting all things, according to the aptitude of the natures which receive its alliance. To the gods, therefore, it affords a conversion to their causes, and ineffable union: it occasions their abiding in themselves, prevents their departing from their own beatitude, strengthens their highest unions, as centres desirable toinferior natures; and stably places about these the multitude of the powers which the gods possess, containing them in the simplicity of their essences. But the circle affords to intellectual natures, a perpetual energy in themselves, is the cause of their being filled with knowledge from themselves, and of possessing in their essences, intelligibles contractedly; and of perfecting intellections in themselves. For every intellect, proposes to itself that which is intelligible; and this is as a centre to intellect, about which it continually revolves: for intellect folds itself, and operates about this, and is united within itself on all sides, by universal intellectual energies. But it extends to souls by illumination, a self-vital, and self-motive power, and an ability of turning, and leaping round intellect, and of returning according to proper convolutions, unfolding the impartibility of intellect. Again, the intellectual orders excel souls after the manner of centres, but souls energize circularly about their nature. For every soul, according to its intellectual part, and the supremeone, which is the very flower of its essence, receives a centre: but, according to its multitude, it has a circular revolution, desiring, by this means, to embrace the intellect which it participates. But, to the celestial bodies, the circle affords an assimilation to intellect, equality, a comprehension of the universe, in proper limits, revolutions which take place in determinate measures, a perpetual subsistence, a nature without beginning and end, and every thing of this kind. And to the elements under the concave of the moon’s orb, it is the cause of a period, conversant with mutations; an assimilation to the heavens; that which is without generation, in generated natures; that which abides in things which are moved; and whatever is bounded in partible essences. For all things are perpetual, through the circle of generation; and equability is every where preserved on account of the reciprocation of corruption. Since, if generation did not return, in a circular revolution, in a short space of time, the order, and all the ornament of the elements would vanish. But again, the circle procures to animals and plants, that similitude which is found in generations; for these are produced from seeds, and seeds from these. Hence, generation here, and a circumvolution, alternately takes place, from the imperfect to the perfect, and the contrary; so that corruption subsists together withgeneration. But, besides this, to unnatural productions it imposes order, and reduces their indeterminate variety to the limitation of bound; and, through this, nature herself is gracefully ornamented in the last vestiges of her powers. Hence, things contrary to nature have a revolution according to determinate numbers, and not only fertility, but also sterility, subsists according to the alternate convolutions of circles (as the discourse of the Muses evinces), and all evils though they are dismissed from the presence of the gods, into the place of mortals, yet these roll round, says Socrates, and to these there is present a circular revolution, and a circular order; so that nothing immoderate and evil is deserted by the gods; but that providence, which is perfective of the universe, reduces also the infinite variety of evils, to bound, and an order convenient to their nature. The circle, therefore, is the cause of ornament to all things, even to the last participations, and leaves nothing destitute of itself, since it supplies beauty, similitude, formation, and perfection to the universe. Hence too, in numbers it contains the middle centres of the whole progression of numbers, which revolves from unity to the decad (or ten). For five and six exhibit a circular power, because, in the progressions from themselves, they return again into themselves, as is evident in the multiplication of these numbers. Multiplication, therefore, is an image of progression, since it is extended into multitude; but an ending in the same species, is an image of regression into themselves. But a circular power affords each of these, exciting, indeed, as from an abiding centre, those causes which are productive of multitude; but converting multitude after the productions to their causes. Two numbers, therefore, having the properties of a circle, possess the middle place between all numbers: of which one, indeed, precedes every convertible genus of males and an odd nature; but the other, recalls every thing feminine and even, and all prolific series, to their proper principles, according to a circular power. And thus much concerning the perfection of the circle. Let us now contemplate the mathematical definition of the circle, which is every way perfect. In the first place, therefore, he defines it a figure, because, indeed, it is finite, and every where comprehended by one limit, and is not of an infinite nature, but associated to bound. Likewiseplane, because, since figures are either beheld in superficies, or in solid bodies, a circle is the first of plane figures, excelling solids in simplicity, but possessing the proportion of unity to planes. But comprehended by one line, because it is similar to one, by which it is defined, and because it does not extrinsically receive a variety of surrounding terms. And again, that this line makes all the lines drawn to it from a certain point within equal, because of the figures which are bounded by one line, some have all the lines proceeding from the middle equal; but others not at all. For the ellipsis is comprehended by one line, yet all the lines issuing from the centre, and bounded by is curvature, are not equal, but only two. Also the plane, which is included by the line called a cissoid, has one containing line, yet it does not contain a centre, from which all the lines are equal. But, because the centre in a circle is entirely one point (for there are not many centres of one circle), on this account, the geometrician adds, that lines falling from one point to the bound of the circle, are equal. For there are infinite points within it, but of all these, one only has the power of a centre. And because this one point, from which all the lines drawn to the circumference of the circle are equal, is either within the circle, or without (for every circle has a pole, from which all the lines drawn to its circumference are equal), on this account he adds,of the points within the figure, because, here he receives the centre alone, and not the pole. For he wishes to behold all its properties in one plane, but the pole is more elevated than the subject plane. Hence, he necessarily adds, in the end of the definition, that this point, which is placed within the circle, and to which all right lines drawn from it to the circumference, are equal, is the centre of the circle. For there are only two points of this kind, the pole and the centre. But the former is without, and the other within the plane. Thus, for instance, if you conceive a perpendicular standing on the centre of a circle, its superior extremity is the pole: for all lines drawn from it to the circumference of the circle, are demonstrated to be equal. And, in like manner, in a cone, the vertex of the whole cone, is the pole of the circle at the base. And thus far we have determined what a circle is, and its centre, and what the nature is of its circumference, and the whole circular figure. Again, therefore, from these, let us returnto the speculation of their exemplars, contemplating in them the centre, according to one impartible and stable excellence. But the distances from the centre, according to the progressions which are made from one, to multitude infinite in capacity. And the circumference of the circle, according to the regression of the progressions to the centre, by means of which the multitude of powers are rolled round their union, and all of them hasten to its comprehension, and desire to energize about its indivisible embrace. And, as in the circle itself, all things subsist together, the centre, intervals, and external circumference; so in these which are its image, one thing has not an essence pre-existent, and another consequent in time; but all things are, indeed, together, permanency, progression, and regression. But these differ from those, because the former subsist indivisibly, and without any dimension; but the latter with dimension; and in a divisible manner; the centre existing in one place, the lines emanating from the centre, in another; and the external circumference terminating the circle, having a still different situation. But there all things abide in one: for if you regard that which performs the office of a centre, you will find it the receptacle of all things. If the progression distant from the centre, in this, likewise, you will find all things contained. And, in a similar manner, if you regard its regression. When, therefore, you are able to perceive all things subsisting together, and have taken away the defect proceeding from dimension, and have removed from your inward vision, the position about which partition subsists, you will find the true circle, advancing to itself, bounding, and energizing in itself, existing both one and many, and abiding, proceeding, and returning; likewise firmly establishing that part of its essence which is most impartible, and especially singular; but advancing from this according to rectitude, and the infinity which it contains; and rolling itself from itself to one, and exciting itself by similitude and identity to the impartible centre of its nature, and to the occult power of the one which it contains. But this one, which the circle contains, and environs in its bosom, it emulates according to the multitude of its own nature. For that which is convolved, imitates that which abides, and the periphery is as a centre which is distant with interval, andnods to itself, hastening to receive, and to become one with the centre, and to terminate its regress where it received the principle of its progression. For the centre is every where in the place of that which is lovely, and the object of desire, presiding over all things which subsist about its nature, and existing as the beginning and author of all progressions. And this the mathematical centre also expresses, by terminating all the lines falling from itself to the circumference, and by affording to them equality, as an image of proper union. But the oracles likewise define the centre, after this manner:The centre is that from which and[168]to which all the lines to the circumference are equal. Indicating the beginning of the distance of the lines, by the particlefrom which; but the middle of the circumference by the particleto which: for this, in every part, is joined with the centre. But if it be necessary to declare the first cause, through which a circular figure appears and receives its perfection, I affirm, that it is the supreme order of intelligibles. For the centre, indeed, is assimilated to the cause of bound; but the lines emanating from this, and which are infinite, with respect to themselves, both in multitude and magnitude, represent infinity; and the line which terminates their extension, and conjoins the circular figure with the centre, is similar to that occult ornament, consisting from the intelligible orders; which Orpheus also says, is circularly borne, in the following words,But it is carried with an unwearied energy, according to an infinite circle. For, since it is moved intelligibly, about that which is intelligible, having it for the centre of its motion, it is, with great propriety, said to energize in a circular manner. Hence, from these also, the triadic god[169]proceeds, who contains in himself the cause of the progression of right-lined figures. For on this account, wise men, and the most mystic of theologists, have fabricated his name. [[170]Hence too, it is manifest, that a circle is the first of all figures:] but a triangle is thefirst of such as are right-lined. Figures, therefore, appear first in the regular ornaments of the gods; but they have a latent subsistence, according to pre-existent causes, in intelligible essences.

ADiameterof a Circle is a certain straight Line, drawn through the Centre, which is terminated both ways by the Circumference of the Circle, and, divides the Circle into two equal Parts.

ADiameterof a Circle is a certain straight Line, drawn through the Centre, which is terminated both ways by the Circumference of the Circle, and, divides the Circle into two equal Parts.

Euclid here perspicuously shews, that he does not define every diameter, but that which belongs to a circle only. Because there is a diameter of quadrangles and all parallelograms, and likewise of a sphere among solid figures. But in the first of these, it is denominated a diagonal: but in a sphere, the axis; and in circles the diameter only. Indeed, we are accustomed to speak of the axis of an ellipsis, cylinder, and cone; but of a circle, with propriety, the diameter. This, therefore, in its genus, is a right-line; but as there are many right-lines in a circle, as likewise infinite points, one of which is a centre, so this only is called a diameter, which passes through the centre, and neither falls within the circumference, nor transcends its boundary; but is both ways terminated by its comprehensive bound. And these observations exhibit its origin. But that which is added in the end, that it also divides the circle into two equal parts, indicates its proper energy in the circle, exclusive of all other lines drawn through the centre, which are not terminated both ways by the circumference. But they report, that Thales first demonstrated, that the circle was bisected by the diameter. And the cause of this bisection, is the indeclineable transit of the right line, through the centre. For, since it is drawn through the middle, and always preserves the same inflexible motion, according to all its parts, it cuts off equal portions on both sides to the circumference of the circle. But if you desire to exhibit the same mathematically, conceive the diameter drawn, and one part of the circle placed on theother[171]. Then, if it is not equal, it either falls within, or without; but the consequence either of these ways must be, that a less right-line will be equal to a greater. Since all lines from the centre to the circumference are equal. The line, therefore, which tends to the exterior circumference, will be equal to that which tends to the interior. But this is impossible. These parts of the circle, then, agree, and are on this account equal. But here a doubt arises, if two semi-circles are produced by one diameter, and infinite diameters may be drawn through the centre, a double of infinities will take place, according to number. For this is objected[172]by some against the section of magnitudes to infinity. But this we may solve by affirming, that magnitude may, indeed, be divided infinitely, but not into infinites. For this latter mode produces infinites in energy, but the former in capacity only. And the one affords essence to infinite, but the other is the source of its origin alone. Two semi-circles, therefore, subsist together with one diameter, yet there will never be infinite diameters, although they may be infinitely assumed. Hence, therecan never be doubles of infinites; but the doubles which are continually produced, are the doubles of finites; for the diameters which are always assumed, are finite in number. And what reason can be assigned why every magnitude should not have finite divisions, since number is prior to magnitudes, defines all their sections, pre-occupies infinity, and always determines the parts which rise into energy, from dormant capacity?

ASemi-circleis the Figure contained by the Diameter, and that Part of the Circumference which is cut off by the Diameter.

ASemi-circleis the Figure contained by the Diameter, and that Part of the Circumference which is cut off by the Diameter.

But theCentreof the Semi-circle, is the same with that of the Circle.

From the definition of a circle Euclid finds out the nature of the centre, differing from all the other points which the circle contains. But from the centre he defines the diameter, and separates it from the other right lines, which are described within the circle. And from the diameter, he teaches the nature of the semi-circle; and informs us, that it is contained by two terms, always differing from each other, viz. a right-line and a circumference: and that this right-line is not any one indifferently, but the diameter of the circle. For both a less and a greater segment of a circle, are contained by a right-line and circumference; yet these are not semi-circles, because the division of the circle is not made through the centre. All these figures, therefore, are biformed, as a circle was monadic, and are composedfrom dissimilars. For every figure which is comprehended by two terms, is either contained by two circumferences, as the lunular: or by a right-line and circumference, as the above mentioned figures; or by two mixt lines, as if two ellipses intersect each other (since they enclose a figure, which is intercepted between them), or by a mixt line and circumference, as when a circle cuts an ellipsis; or by a mixt and right-line, as the half of an ellipsis. But a semi-circle is composed from dissimilar lines, yet such as are, at the same time, simple, and touching each other by apposition. Hence, before he defines triadic figures, he, with great propriety, passes from the circle to a biformed figure. For two right-lines can, indeed, never comprehend space. But this may be effected by a right-line and circumference. Likewise by two circumferences, either making angles, as in the lunular figure; or forming a figure without angles, as that which is comprehended by concentric circles. For the middle space intercepted between both, is comprehended by two circumferences; one interior, but the other exterior, and no angle is produced. For they do not mutually intersect, as in the lunular figure, and that which is on both sides convex. But that the centre of the semi-circle is the same with that of the circle, is manifest. For the diameter, containing in itself the centre, completes the semi-circle, and from this all lines drawn to the semi-circumference are equal. For this is a part of the circumference of the circle. But equal right lines proceed from the centre to all parts of the circumference. The centre, therefore, of the circle and semi-circle is one and the same. And it must be observed, that among all figures, this alone contains the centre in its own perimeter, I say, among all plane figures. Hence you may collect, that the centre has three places. For it is either within a figure, as in the circle; or in its perimeter, as in the semi-circle; or without the figure, as in certain conic lines[174]. What then is indicated by the semi-circles, having the same centre with the circle, or of what things does it bear an image, unless that all figures which do not entirely depart from such as are first, but participate them after a manner, may be concentric with them, and participate of the same causes? For the semi-circle communicates with the circle doubly, as well according to the diameter,as according to the circumference. On this account, they possess a centre also in common. And perhaps, after the most simple principles, the semi-circle is assimilated to the second co-ordinations, which participate those principles; and by their relation to them, although imperfectly, and by halves, they are, nevertheless, reduced to that which is, and to their first original cause.

Rectilinear Figuresare those which are comprehended by Straight Lines.

Trilateral Figures, orTriangles, by three Straight Lines.

Quadrilateral, by four Straight Lines.

Multilateral Figures, orPolygons, by more than four Straight Lines.

After the monadic figure having the relation of a principle to all figures, and the biformed semi-circle, the progression of right-lined figures in infinitum, according to numbers, is delivered. For on this account also, mention was made of the semi-circle, as communicating according to terms or boundaries; partly, indeed, with the circle, but partly with right-lines: just as the duad is the medium between unity and number. For unity, by composition, produces more than by multiplication; but number, on the contrary, is more increased by multiplication than composition: and the duad, whether multiplied into, or compounded with itself, produces an equal quantity. As, therefore, the duad is the middle of unity and number, so likewise, a semi-circle communicates, according to its base, with right-lines;but according to its circumference, with the circle. But right-lined figures proceed orderly to infinity, attended by number and its bounding power, which begins from the triad. On this account, Euclid also begins from hence[175]. For he says, trilateral and quadrilateral, and the following figures, called by the common name of multilateral: since trilateral figures are also multilaterals; but they have likewise a proper, besides a common denomination. But, as we are but little able to pursue the rest, on account of the infinite progression of numbers, we must be content with a common denomination. But he only makes mention of trilaterals and quadrilaterals, because the triad and tetrad are the first in the order of numbers; the former being a pure odd among the odd; but the latter, an entire even among even numbers. Euclid, therefore, assumes both in the origin of right-lined figures, for the purpose of exhibiting their subsistence, according to all even and odd numbers. Besides, since he is about to teach concerning these in the first book, as especially elementary (I mean triangles and parallelograms) he does not undeservedly, as far as to these, establish a proper enumeration: but he embraces all other right-lined figures by a common name, calling them multilaterals: but of these enough. Again, assuming a more elevated exordium, we must say, that of plane figures, some are contained by simple lines, others by such as are mixt, but others again by both. And of those which are comprehended by simple lines, some are contained by similars in species, as right-lines; but others by dissimilars in species, as semi-circles, and segments, and apsides, which are less than semi-circles. Likewise of those which are contained by similars in species, some are comprehended by a circular line; but others by a right-line. And of those comprehended by a circular line, some are contained by one, others by two, but others by more than two. By one, indeed, the circle itself. But by two, some without angles, as the crowns[176]terminated by concentric circles; but others angular (γεγωνιωμένα) as the lunula.And of those comprehended by more than two, there is an infinite procession. For there are certain figures contained by three and four and succeeding circumferences. Thus, if three circles touch each other, they will intercept a certain trilateral space; but if four, one terminated by four circumferences, and in like manner, by a successive progression. But of those contained by right lines, some are comprehended by three, others by four, and others by a multitude of lines. For neither is space comprehended by two right-lines, nor much more by one right-line. Hence, every space comprehended by one boundary, or by two, is either mixt or circular. And it is mixt in a twofold manner, either because the mixt lines comprehend it, as the space intercepted by the cissoidal line; or because it is contained by lines dissimilar in species, as the apsis: since mingling is twofold, either by apposition or confusion. Every right-lined figure, therefore, is either trilateral, or quadrilateral, or gradually multilateral; but every trilateral, or quadrilateral, or multilateral figure, is not right-lined; since so great a number of sides is also produced from circumferences. And thus much concerning the division of plane figures. But we have already asserted[177], that rectitude of progression is both a symbol of motion and infinity, and that it is peculiar to the generative co-ordinations of the gods, and to the producers of difference, and to the authors of mutation and motion. Right-lined figures, therefore, are peculiar to these gods, who are the principles of the prolific energy of the whole progression of forms. On which account, generation also, was principally adorned by these figures, and is allotted its essence from these, so far as it subsists in continual motion and mutation without end.


Back to IndexNext