DEFINITION X.

DEFINITION X.

When a Right Line standing on a Right Line, makes the successive Angles on each side equal to one another, each of the equal Angles, is a Right Angle; and the insisting Right Line, is called aPerpendicularto that upon which it stands.

When a Right Line standing on a Right Line, makes the successive Angles on each side equal to one another, each of the equal Angles, is a Right Angle; and the insisting Right Line, is called aPerpendicularto that upon which it stands.

AnObtuse Angleis that which is greater than aRight Angle.

But anAcute Angle, is that which is less than aRight Angle.

These are the triple species of angles, which Socrates speaks of in the Republic, and which are received by geometricians from hypothesis; a right-line constituting these angles, according to a division into species; I mean, the right, the obtuse, and the acute. The first of these being defined by equality, identity and similitude; but the others being composed through the nature of the greater and the lesser; and lastly, through inequality and diversity, and through the more and the less, indeterminately assumed. But many geometricians, are unable to render a reason of this division, and use the assertion, that there are three angles, as an hypothesis[158]. So that,when we interrogate them concerning its cause, they answer, this is not to be required of them as geometricians. However, the Pythagoreans, referring the solution of this triple distribution to principles, are not wanting in rendering the causes of this difference of right-lined angles. For, since one of the principles subsists according to bound, and is the cause of limitation, identity, and equality, and lastly, of the whole of a better co-ordination: but the other is of an infinite nature, and confers on its progeny, a progression to infinity, increase, and decrease, inequality, and diversity of every kind, and entirely presides over the worse series; hence, with great propriety, since the principles of a right-lined angle are constituted by these, the reason proceeding from bound, produces a right angle, one, with respect to the equality of every right angle, endued with similitude, always finite and determinate, ever abiding the same, and neither receiving increment nor decrease. But the reason proceeding from infinity, since it is the second in order, and of a dyadic nature, produces twofold angles about the right angle, distinguished by inequality, according to the nature of the greater and the lesser, and possessing an infinite motion, according to the more and the less, since the one becomes more or less obtuse; but the other more or less acute. Hence, in consequence of this reason, they ascribe right angles to the pure and immaculate gods of the divine ornaments, and divine powers which proceed into the universe, as the authors of the invariable providence of inferiors; for rectitude, and an inflexibility and immutability to subordinate natures accords with these gods: but they affirm, that the obtuse and acute angles should be ascribed to the gods, who afford progression, and motion, and a variety of powers. Since obtuseness is the image of an expanded progression of forms; but acuteness possesses a similitude to the cause dividing and moving the universe. But likewise, among the things which are, rectitude is, indeed, similar to essence, preserving the same bound of its being; but the obtuse and acute, shadow forth the nature of accidents. For these receive the more and the less, and are indefinitely changed without ceasing. Hence, with great propriety, they exhort the soul to make her descent into generation, according to this invariable species of the right angle, by not verging to this part more than to that; and by not affectingsome things more, and others less. For the distribution of a certain convenience and sympathy of nature, draws it down into material error, and indefinite variety[159]. A perpendicular line is, therefore, the symbol of inflexibility, purity, immaculate, and invariable power, and every thing of this kind. But it is likewise the symbol of divine and intellectual measure: since we measure the altitudes of figures by a perpendicular, and define other rectilineal angles by their relation to a right angle, as by themselves they are indefinite and indeterminate. For they are beheld subsisting in excess and defect, each of which is, by itself, indefinite. Hence they say, that virtue also stands according to rectitude; but that vice subsists according to the infinity of the obtuse and acute, that it produces excesses and defects, and that the more and the less exhibit its immoderation, and inordinate nature. Of rectilineal angles, therefore, we must establish the right angle, as the image of perfection, and invariable energy, of limitation, intellectual bound, and the like; but the obtuse and acute, as shadowing forth infinite motion, unceasing progression, division, partition and infinity. And thus much for the theological speculation of angles. But here we must take notice, that the genus is to be added to the definitions of an obtuse and acute angle; for each is right-lined, and the one is greater, but the other less than a right-angle. But it is not absolutely true, that every angle which is less than a right one, is acute. For the cornicular is less than every right-angle, because less than an acute one, yet is not on this account an acute angle. Also, a semi-circular is less than any right-angle, yet is not acute. And the cause of this property is because they are mixt, and not rectilineal angles. Besides, many curve-lined angles appear greater than right-lined angles, yet are not on this account obtuse; because it is requisite that an obtuse should be a right-lined angle. Secondly, as it was the intention of Euclid, to define a right-angle, he considers a right-line standing upon another right-line, and making the angles on each side equal. But he defines an obtuse and acute angle, not from the inclination of a right line to either part, but from their relation to a right-angle.For this is the measure of angles deviating from the right, in the same manner as equality of things unequal. But lines inclined to either part, are innumerable, and not one alone, like a perpendicular. But after this, when he says, (the angles equal to one another) he exhibits to us a specimen of the greatest geometrical diligence; since it is possible that angles may be equal to others, without being right. But when they are equal to one another, it is necessary they should be right. Besides, the wordsuccessiveappears to me not to be added superfluously, as some have improperly considered it; since it exhibits the reason of rectitude. For it is on this account that each of the angles is right; because, when they aresuccessive, they are equal. And, indeed, the insisting right-line, on account of its inflexibility to either part, is the cause of equality to both, and of rectitude to each. The cause, therefore, of the rectitude of angles, is not absolutely mutual equality, but position in a consequent order, together with equality. But, besides all this, I think it here necessary to call to mind, the purpose of our author; I mean, that he discourses in this place, concerning the angles consisting in one plane. And hence, this definition is not of every perpendicular; but of that which is in one and the same plane. For it is not his present design to define a solid angle. As, therefore, he defines, in this place, a plane angle, so likewise a perpendicular of this kind. Because a solid perpendicular ought not to make right angles to one right-line only; but to all which touch it, and are contained in its subject plane: for this is its necessary peculiarity.


Back to IndexNext